Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{a^2}{a^3+abc}+\frac{b^2}{b^3+abc}+\frac{c^2}{c^3+abc}.\) " nhân cả tử cả mẫu cho a , b , c lần lượt
\(\frac{a^2}{a^3+abc}\le\frac{1}{4}\left(\frac{a^2}{a^3}+\frac{a^2}{abc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{a}{bc}\right)\left(cosishaw\right)\)
\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)
từ đề bài ta suy ra
\(bc=\frac{a^2+B^2+c^2}{a};ac=\frac{a^2+B^2+c^2}{b};ab=\frac{a^2+b^2+c^2}{c}.\)
\(\frac{a}{bc}=\frac{a}{\frac{a^2+B^2+c^2}{a}}=\frac{a^2}{a^2+B^2+c^2}\)
\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}\right)\)
\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)
từ đề bài suy ra tiếp
\(a=\frac{a^2+b^2+c^2}{bc};\frac{1}{a}=\frac{1}{\frac{a^2+b^2+c^2}{bc}}=\frac{bc}{a^2+B^2+c^2}\) " tương tự với các số hạng
suy ra
\(P\le\frac{1}{4}\left(\frac{bc+ac+Ab}{a^2+b^2+c^2}+1\right)\)
\(bc+ac+ab\le a^2+B^2+c^2\left(cosi\right)\)
\(P\le\frac{1}{4}\left(1+1\right)=\frac{1}{2}\)
max của P là 1/2
dấu = xảy ra khi a=b=c=3
thử thay vào ta được
\(\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}=\frac{a}{2a^2}+\frac{a}{2a^2}+\frac{a}{2a^2}=\frac{3}{2a}=\frac{3}{2.3}=\frac{1}{2}\) " đúng "
sửa lại cái đề bài thành \(a^2+b^2+c^2=abc\) đi
không bọn não chó nó tích sai cho tao đấy dcmmm
bọn ngu học :)
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Ta có a3_ a2b +ab2 _6b3=0
<=> (a3 - 2a2 b) + (a2 b - 2ab2) + (3ab2 - 6b3) = 0
<=> (a - 2b)(a2 + ab + 3b2) = 0
Vì a >b>0 nên (a2 + ab + 3b2) >0
=> a - 2b = 0 <=> a = 2b
Thế vào B=a4- 4b4 /b4 -4a4 = \(\frac{-4}{21}\)
Chia hai vế của giải thiết cho \(b^3\),ta có:
\(\frac{a^3}{b^3}-\frac{a^2}{b^2}+\frac{a}{b}-6=0\) Đặt \(\frac{a}{b}=v\) (v nguyên)
Suy ra \(v^3-v^2+v-6=0\) (1)
Giải (1),tìm được v = 2 tức là \(\frac{a}{b}=2\)
Thay vào B,ta có: \(B=\frac{\frac{a^{\text{4 }}}{b^4}.b^4-4b^4}{b^4-4.\frac{a^4}{b^4}.b^4}=\frac{b^4\left(2^4-4\right)}{b^4\left(1-4.2^4\right)}\)\(=\frac{12}{-63}=-\frac{4}{21}\)