Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8-12x+6x^2-x^3\)
\(=\left(2-x\right)^3\)
\(125x^3-75x^2+15x-1\)
\(=\left(5x-1\right)^3\)
\(x^2-xz-9y^2+3yz\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x+9\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
\(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)
Câu 8:
Giải:
Ta có: \(a:b=3:4\Rightarrow\frac{a}{3}=\frac{b}{4}\Rightarrow\frac{a^2}{9}=\frac{b^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)
+) \(\frac{a^2}{9}=\frac{36}{25}\Rightarrow a^2=\frac{324}{25}\Rightarrow a=\pm\frac{18}{5}\)
+) \(\frac{b^2}{16}=\frac{36}{25}\Rightarrow b^2=\frac{576}{25}\Rightarrow b=\pm\frac{24}{5}\)
Vậy bộ số \(\left(x;y\right)\) là \(\left(\frac{18}{5};\frac{24}{5}\right);\left(\frac{-18}{5};\frac{-24}{5}\right)\)
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3
Ta có :P không chia hết cho 2
=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)
Mặt khác:P không chia hết cho 3
Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3
Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)
Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24
Xin lỗi mình viết nhầm
A = 2 + 22 + 23 + 24 + ... + 2199 + 2200
A = ( 2 + 22 + 23 + 24 ) + ... + ( 2197 + 2198 + 2199 + 2200 )
A = 2 . ( 1 + 2 + 22 + 23 ) + ... + 2197 ( 1 + 2 + 22 + 23 )
A = 2 . 15 + ... + 2197 . 15
A = ( 2 + ... + 2197 ) .15 \(\Rightarrow A⋮15\)
a , \(\left(\dfrac{-2}{3}+1\dfrac{1}{4}-\dfrac{1}{6}\right):\dfrac{-24}{10}\)
=\(\left(\dfrac{-2}{3}+\dfrac{5}{4}-\dfrac{1}{6}\right):\dfrac{-12}{5}\)
=\(\left(\dfrac{-8}{12}+\dfrac{15}{12}-\dfrac{2}{12}\right)\cdot\dfrac{-5}{12}\)
=\(\dfrac{5}{12}\cdot\dfrac{-5}{12}=\dfrac{-25}{144}\)
b , \(\dfrac{13}{15}\cdot0,25\cdot3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right)1\dfrac{23}{24}\)
=\(\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right)\cdot\dfrac{57}{24}\)
=\(\dfrac{13}{20}-\dfrac{47}{60}\cdot\dfrac{57}{24}\)
=\(\dfrac{13}{20}-\dfrac{893}{480}=\dfrac{312}{480}-\dfrac{893}{480}=\dfrac{-581}{480}\)
c , \(\left(\dfrac{12}{32}+\dfrac{5}{-20}-\dfrac{10}{24}\right):\dfrac{2}{3}\)
=\(\left(\dfrac{180}{480}-\dfrac{120}{480}-\dfrac{200}{480}\right)\cdot\dfrac{3}{2}\)
= \(\dfrac{-7}{24}\cdot\dfrac{3}{2}=\dfrac{-7}{16}\)
d , \(4\dfrac{1}{2}:\left(2,5-3\dfrac{3}{4}\right)+\left(-\dfrac{1}{2}\right)\)
=\(\dfrac{9}{2}:\left(\dfrac{5}{2}-\dfrac{15}{4}\right)-\dfrac{1}{2}\)
=\(\dfrac{9}{2}:\dfrac{-5}{4}-\dfrac{1}{2}=\dfrac{9}{2}\cdot\dfrac{-4}{5}-\dfrac{1}{2}=\dfrac{-18}{5}-\dfrac{1}{2}=\dfrac{-41}{10}\)
e , \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)=\dfrac{-5}{2}\left(\dfrac{3}{4}-\dfrac{2}{4}\right)\)
=\(\dfrac{-5}{2}:\dfrac{1}{4}=\dfrac{-5}{2}\cdot4=-10\)
n=24080