K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

đkxđ : \(x\ge0,x\ne1\)

\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

= \(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

16 tháng 8 2017

\(0< x< 1\)

\(\Rightarrow\sqrt{x}< 1\)

\(\Rightarrow\sqrt{x}-1< 0\)

\(\Rightarrow-\sqrt{x}\left(\sqrt{x}-1\right)>0\)

5 tháng 7 2017

phần a mk tưởng phải bằng -\(2\sqrt{x}\)

22 tháng 8 2017

d/ Ta có:

\(A=\left(-x+\sqrt{x}-\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(=\dfrac{1}{4}-\left(\sqrt{x}-\dfrac{1}{2}\right)^2\le\dfrac{1}{4}\)

Vậy GTLN là \(A=\dfrac{1}{4}\) đạt được tại \(x=\dfrac{1}{4}\)

22 tháng 8 2017

b/ \(\sqrt{1x}-x\)

c/ Ta có:

x < 1

\(\Rightarrow\sqrt{x}< 1\)

\(\Rightarrow1-\sqrt{x}>0\)

Ta lại có: x > 0

\(\Rightarrow A=\sqrt{x}-x=\sqrt{x}\left(1-\sqrt{x}\right)>0\)

14 tháng 8 2017

cau a) =\((\dfrac{\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+1)}-\dfrac{\sqrt{x}+2}{(\sqrt{x}+1)^{2}})\)x\(\dfrac{(\sqrt{x}-1)^{2}}{2} \)

=\(\dfrac{(\sqrt{x}-2)(\sqrt{x}+1)-(\sqrt{x}+2)(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)^{2}}\)x\(\dfrac{(\sqrt{x}-1)^{2}}{2} \)

=\(\dfrac{-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)^{2}}\)x\(\dfrac{(\sqrt{x}-1)^{2}}{2} \)

=\(\dfrac{-(\sqrt{x})(\sqrt{x}-1)}{(\sqrt{x}+1)^{2}}\)

14 tháng 8 2017

cau b)

do x<1 => \(\sqrt{x}\)<1 => \(\sqrt{x} -1 <0\)

=> \(-(\sqrt{x})(\sqrt{x}-1)>0\)

mẫu số chắc chắn lớn hơn 0 rồi

nên A>0

có j k hỉu ib hỏi mình nha

25 tháng 7 2017

Căn bậc hai. Căn bậc ba

d/

D chỉ có Min thôi nha bạn!

25 tháng 7 2017

Mik giải v bj sai r nha bạn!ngaingung

16 tháng 8 2018

a) ta có : \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{1-x}{\sqrt{2}}\right)^2\)

\(\Leftrightarrow P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\left(\dfrac{1-x}{\sqrt{2}}\right)^2\)

\(\Leftrightarrow P=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\left(\dfrac{1-x}{\sqrt{2}}\right)^2\)

\(\Leftrightarrow P=\left(\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\left(\dfrac{1-x}{\sqrt{2}}\right)^2\) \(\Leftrightarrow P=\left(\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\) \(\Leftrightarrow P=\sqrt{x}-x\)

b) ta có : \(x< 1\Leftrightarrow x-1< 0\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)< 0\)

\(\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow x-\sqrt{x}< 0\Leftrightarrow\sqrt{x}-x>0\)

\(\Leftrightarrow P>0\left(đpcm\right)\)

7 tháng 6 2017

a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)

\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)

\(=\dfrac{1}{2\sqrt{2}a}\)

\(=\dfrac{\sqrt{2}}{4a}\)

b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

chịu đấy :v

c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)

\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)

\(=\dfrac{-x+1+x^2}{x-3}\)

d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)

\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)

e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\sqrt{x^2}\)

\(=4x-2\sqrt{x}+x\)

\(=5x-2\sqrt{2}\)

8 tháng 6 2017

bạn ơi phần c mình sai đề bài.. bạn giúp mk giải lại đc k \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

A)

Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )

\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)

\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)

Có:

\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)

\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

B)

\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)

\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)

\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)

\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$

T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)

\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)