Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).0\)
\(=0\)
\(\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).0\)
\(=0\)
=(1975/1976+2010/2011+1963/1968)x(4/12-3/12-1/12)
=(1975/1976+2010/2011+1963/1968)x0
=0
Sửa đề:
\(\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{12}\right)\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{4-3-1}{12}\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{0}{12}\)
\(=0\)
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2013}{2013}+\frac{1}{2013}+\frac{1}{2013}=\left(\frac{2013}{2014}+\frac{1}{2013}\right)+\left(\frac{2014}{2015}+\frac{1}{2013}\right)+1\)
Ta có: \(\frac{2013}{2014}+\frac{1}{2013}>\frac{2013}{2014}+\frac{1}{2014}=\frac{2014}{2014}=1\)
\(\frac{2014}{2015}+\frac{1}{2013}>\frac{2014}{2015}+\frac{1}{2015}=\frac{2015}{2015}=1\)
=> A > 1+ 1 + 1 = 3
Ta có :
\(1-\frac{1945}{1975}=\frac{6}{395}\)
\(1-\frac{1975}{2005}=\frac{6}{401}\)
Vì \(\frac{6}{395}>\frac{6}{401}\) nên \(1-\frac{1945}{1975}>1-\frac{1975}{2005}\)
\(\Rightarrow\)\(1+\frac{-1945}{1975}-1>1+\frac{-1975}{2005}-1\) ( trừ hai vế cho 1 )
\(\Rightarrow\)\(\frac{-1945}{1975}>\frac{-1975}{2005}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Ta có: \(\text{1 + A =}1+\frac{-1945}{1975}=\frac{6}{395}\)
\(1+B=1+\frac{-1975}{2005}=\frac{6}{401}\)
Vì\(\frac{6}{395}>\frac{6}{401}\)nên\(1+A>1+B\)
Suy ra \(A>B\)
Ta có : \(\frac{2014}{2014+1975}< \frac{2014}{1963+2014};\frac{1975}{1963+1975}< 1\)
Vậy: \(A< \frac{2014}{1963+2014}+\frac{1963}{1963+2014}+1\)
\(A< \frac{2014+1963}{1963+2014}+1\)
\(A< 2\)
Cbht
Ta có: \(\frac{2014}{2014+1975}< \frac{2014}{1963+2014}\)
Và \(\frac{1975}{1963+1975}< 1\)
Nên \(A< \frac{2014}{1963+2014}+\frac{1963}{1963+2014}+1\)
\(A< \frac{2014+1963}{1963+2014}+1\)
\(\Rightarrow A< 1+1\) \(\Rightarrow A< 2\)
Vậy: \(A< 2\)
Good luck !!! Rất vui vì giúp đc bạn bạn <3