K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A=\frac{-\left(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\right)}{\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}}\)

\(=\frac{-\left(\sqrt{3-2\cdot\sqrt{3}\cdot2+4}+\sqrt{3+2\cdot\sqrt{3}\cdot2+4}\right)}{\sqrt{3-2\cdot\sqrt{3}\cdot2+4}-\sqrt{3+2\cdot\sqrt{3}\cdot2+4}}\)

\(=\frac{-\left(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}\right)}{\sqrt{\left(\sqrt{3}-2\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}}\)

\(=\frac{-\left(\left|\sqrt{3}-2\right|+\left|\sqrt{3}+2\right|\right)}{\left|\sqrt{3}-2\right|-\left|\sqrt{3}+2\right|}\)

\(=\frac{-\left(2-\sqrt{3}+\sqrt{3}+2\right)}{2-\sqrt{3}-\sqrt{3}-2}\)

\(=\frac{-4}{-2\sqrt{3}}=\frac{2\sqrt{3}}{3}\)

3: \(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

4: \(=\dfrac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\sqrt{2}\)

5: \(=\dfrac{\sqrt{23-8\sqrt{7}}}{3}+\dfrac{\sqrt{23+8\sqrt{7}}}{3}\)

\(=\dfrac{4-\sqrt{7}+4+\sqrt{7}}{3}=\dfrac{8}{3}\)

a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))

\(=5-3-\sqrt{5}\)

\(=2-\sqrt{5}\)

b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)

\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)

\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)

\(=2\sqrt{3}+\sqrt{6}\)

c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)

\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)

\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)

\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)

\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))

\(=\sqrt{3}+\frac{8}{3}\)

d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)

\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)

\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)

\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))

\(=6-3\sqrt{3}\)

NV
16 tháng 9 2019

a/ \(=\left(7+4\sqrt{3}+3\left(7-4\sqrt{3}\right)\right)\left(7+2\sqrt{3}\right)\)

\(=\left(28-8\sqrt{3}\right)\left(7+2\sqrt{3}\right)\)

\(=4\left(7-2\sqrt{3}\right)\left(7+2\sqrt{3}\right)\)

\(=4\left(49-12\right)=...\)

b/ \(=\left(\frac{\sqrt{15}\left(\sqrt{3}-1\right)}{3\left(\sqrt{3}-1\right)}+\frac{2\sqrt{15}}{3}\right).4\sqrt{15}\)

\(=\left(\frac{\sqrt{15}}{3}+\frac{2\sqrt{15}}{3}\right).4\sqrt{15}\)

\(=\sqrt{15}.4\sqrt{15}=4.15=...\)

c/ Bạn coi lại đề

d/ \(\sqrt{23-2\sqrt{112}}+\sqrt{23+2\sqrt{112}}\)

\(=\sqrt{\left(4-\sqrt{7}\right)^2}+\sqrt{\left(4+\sqrt{7}\right)^2}\)

\(=4-\sqrt{7}+4+\sqrt{7}=8\)

25 tháng 7 2016

a) \(=\left|\sqrt{5}-3\right|+\sqrt{5-2\sqrt{20}+4}\)

\(=3-\sqrt{5}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=3-\sqrt{5}+\left|\sqrt{5}-2\right|\)

\(=3-\sqrt{5}+\sqrt{5}-2\)

\(=1\)

 

 

25 tháng 7 2016

b)\(=\left(\sqrt{5}+1\right)\cdot\sqrt{2}\cdot\left(6-2\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}\)

\(=\left(\sqrt{5}+1\right)\left(6-2\sqrt{5}\right)\sqrt{6+2\sqrt{5}}\)

\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2\)

\(=16\)

 

18 tháng 7 2018

a) \(\sqrt{200}+2\sqrt{108}-\sqrt{98}+\frac{1}{3}\sqrt{\frac{81}{3}}-3\sqrt{75}\)

\(=10\sqrt{2}+12\sqrt{3}-7\sqrt{2}+\sqrt{3}-15\sqrt{3}\)

\(=3\sqrt{2}-2\sqrt{3}\)

b)\(\left(21\sqrt{\frac{1}{7}}+\frac{1}{2}\sqrt{112}-\frac{14}{3}\sqrt{\frac{9}{7}}+7\right):3\sqrt{7}\)

\(=\left(3\sqrt{7}+2\sqrt{7}-2\sqrt{7}+7\right):3\sqrt{7}\)

\(=\frac{\sqrt{7}\left(3+\sqrt{7}\right)}{3\sqrt{7}}=\frac{\sqrt{7}+3}{3}\)

c)\(\left(\sqrt{27}-\sqrt{125}+\sqrt{45}+\sqrt{12}\right)\left(\sqrt{75}+\sqrt{20}\right)\)

\(=\left(3\sqrt{3}-5\sqrt{5}+3\sqrt{5}+2\sqrt{3}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)

\(=\left(5\sqrt{3}-2\sqrt{5}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)

\(=75-20=55\)

d)\(\left(\frac{3}{\sqrt{6}-3}-\frac{3}{\sqrt{6}+3}\right).\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\frac{\sqrt{28-6\sqrt{3}}}{1}\)

\(=\frac{3\left(\sqrt{6}+3\right)-3\left(\sqrt{6}-3\right)}{-3}.\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\sqrt{\left(3\sqrt{3}-1\right)^2}\)

\(=\frac{-6\left(3-\sqrt{3}\right)}{2-2\sqrt{3}}-\left(3\sqrt{3}-1\right)\left(do3\sqrt{3}>1\right)\)

\(=\frac{6\sqrt{3}-18}{2-2\sqrt{3}}-\frac{8\sqrt{3}-20}{2-2\sqrt{3}}\)

\(=\frac{6\sqrt{3}-18-8\sqrt{3}+20}{2-2\sqrt{3}}=\frac{2-2\sqrt{3}}{2-2\sqrt{3}}=1\)