\(2x^2y+x^3-2x^2-2xy^2-x^2y+2xy+6\)

tính A biết 2y+x-2=0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2019

Vì 2y + x - 2 = 0 nên

\(A=2x^2y+x^3-2x^2-2xy^2-x^2y+2xy+6\\ =x^2\left(2y+x-2\right)-xy\left(2y+x-2\right)+6\\ =0+0+6\\ =6\)

Vậy A = 6

Tui chẳng nghĩ gì về số cúp cả

7 tháng 4 2016

trả lời đi t đag cần gấp lắm

17 tháng 11 2015

Do \(x+y-2=0\Leftrightarrow x+y=2\Leftrightarrow x-2=-y\)

\(N=x^2\left(x-2\right)-xy^2+2xy+2\left(x+y\right)-2\)

\(=-x^2y-xy^2+2xy+2.2-2=-xy\left(x+y\right)+2xy+2=-2xy+2xy+2=2\)

17 tháng 11 2015

khó nhỉ.         

AH
Akai Haruma
Giáo viên
25 tháng 3 2018

Lời giải:

\(x+y-2=0\Leftrightarrow x+y=2\)

Suy ra:

\(N=x^3-2x^2-xy^2+2xy+2x+2y-2\)

\(=x^3-(x+y)x^2-xy^2+2xy+2x+2y-2\)

\(=-x^2y-xy^2+2xy+2(x+y)-2\)

\(=-xy(x+y)+2xy+2.2-2\)

\(=-2xy+2xy+4-2=2\)

25 tháng 3 2018

\(N=x^3-2x^2-xy^2+2xy+2x+2y-2\)

\(N=\left(x^3-2x^2+x^2y\right)+\left(-x^2y+2xy-xy^2\right)+\left(2x+2y-4\right)+\left(4-2\right)\)

\(N=x^2\left(x-2+y\right)-xy\left(x-2+y\right)+2\left(x+y-2\right)+2\)

\(N=\left(x+y-2\right)\left(x^2-xy+2\right)+2=0.\left(x^2-xy+2\right)+2=2\)

1 tháng 6 2018

Bài 2: a) Bậc của đa thức P(x) là 4

b) Thay x=0 vào đa thức , ta đc

P(x)=02+ 2.0-3= -3

Vây x=0 thì P(x) đc kết quả là -3

Thay x=2 vào đa thức ta đc

P(x)= 22 + 2.2 -3= 5

( Chúc bạn học tốt)

1 tháng 6 2018
https://i.imgur.com/Eu8WTsP.jpg
17 tháng 6 2018

A + B - C = \(x^2-2x\)\(+3xy^2-x^2y+x^2y^2\)\(+\left(-2x^2\right)+3y^2-5x+y+3\)\(-\left(3x^2-2xy+7y^2-3x-5y-6\right)\)

\(x^2-2x+3xy^2-x^2y+x^2y^2-2x^2+3y^2-5x+y+3-3x^2+2xy-7y^2+3x+5y+6\)

=  \(-4x^2+3xy^2-4x-4y^2+6y+2xy+9\)

A-B+C=\(x^2-2x+3xy^2-x^2y+x^2y^2\)\(-\left(-2x^2+3y^2-5x+y+3\right)\)\(+3x^2-2xy+7y^2-3x-5y-6\)

 = \(x^2-2x+3xy^2-x^2y+x^2y^2+2x^2-3y^2+5x-y-3\)\(+3x^2-2xy+7y^2-3x-5y-6\)

\(6x^2+3xy^2+4y^2-2xy-6y-9\)

-A+B+C =\(-\left(x^2-2x+3xy^2-x^2y+x^2y^2\right)\)\(-2x^2+3y^2-5x+y+3+3x^2-2xy+7y^2\)\(-3x-5y-6\)

\(-x^2+2x-3xy^2+x^2y-x^2y^2\)\(-2x^2+3y^2-5x+y+3\)\(+3x^2-2xy+7y^2-3x-5y-6\)

\(-6x+10y^2-3xy^2-4y-2xy-3\)

còn bậc cậu tự tìm nha bậc để mà

24 tháng 2

a) Tính A - B và B - A:

Cho hai đa thức:

A=x2y+2xy2−7x2y2+x4A = x^2y + 2xy^2 - 7x^2y^2 + x^4

B=5x2y2−2y2x−yx2−3x4−1B = 5x^2y^2 - 2y^2x - yx^2 - 3x^4 - 1

1. Tính A - B:

\[ A - B = (x^2y + 2xy^2 - 7x2y2 + x^4) - (5x2y2 - 2y^2x - yx^2 - 3x^4 - 1) \]

= x2y+2xy2−7x2y2+x4−5x2y2+2xy2+yx2+3x4+1x^2y + 2xy^2 - 7x^2y^2 + x^4 - 5x^2y^2 + 2xy^2 + yx^2 + 3x^4 + 1

= x2y+2xy2−12x2y2+4x4+1x^2y + 2xy^2 - 12x^2y^2 + 4x^4 + 1

2. Tính B - A:

\[ B - A = (5x2y2 - 2y^2x - yx^2 - 3x^4 - 1) - (x^2y + 2xy^2 - 7x2y2 + x^4) \]

= 5x2y2−2y2x−yx2−3x4−1−x2y−2xy2+7x2y2−x45x^2y^2 - 2y^2x - yx^2 - 3x^4 - 1 - x^2y - 2xy^2 + 7x^2y^2 - x^4

= 12x2y2−2xy2−yx2−4x4−112x^2y^2 - 2xy^2 - yx^2 - 4x^4 - 1

b) Tìm GTLN của đa thức A + B:

\[ A + B = (x^2y + 2xy^2 - 7x2y2 + x^4) + (5x2y2 - 2y^2x - yx^2 - 3x^4 - 1) \]

= x2y+2xy2−2x2y2−2y2x−2x4−1x^2y + 2xy^2 - 2x^2y^2 - 2y^2x - 2x^4 - 1

Với đa thức A+B=x2y+2xy2−2x2y2−2y2x−2x4−1A + B = x^2y + 2xy^2 - 2x^2y^2 - 2y^2x - 2x^4 - 1, để tìm giá trị lớn nhất, ta cần phải khảo sát hàm số bằng cách đạo hàm theo biến x và y rồi tìm các giá trị cực đại trên miền xác định của biến x và y. Tuy nhiên, việc này thường phức tạp và cần các kỹ thuật tính toán sâu hơn, không thể thực hiện một cách ngắn gọn.