K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 10 2024

Lời giải:

a. Với $n$ nguyên, để $A$ nguyên thì $6n-1\vdots 3n+2$

$\Rightarrow 2(3n+2)-5\vdots 3n+2$

$\Rightarrow 5\vdots 3n+2$

$\Rightarrow 3n+2\in \left\{\pm 1; \pm 5\right\}$

$\Rightarrow n\in \left\{-\frac{1}{3}; -1; 1; \frac{-7}{3}\right\}$

Do $n$ nguyên nên $n\in\left\{-1;1\right\}$

b.

\(A=\frac{2(3n+2)-5}{3n+2}=2-\frac{5}{3n+2}\)

Để $A$ min thì $\frac{5}{3n+2}$ max

$\Rightarrow 3n+2$ phải là số nguyên dương bé nhất.

$3n+2>0\Rightarrow n> \frac{-2}{3}=-0,6666$

$\Rightarrow n$ nhỏ nhất là $0$

$\Rightarrow 3n+2$ nhỏ nhất bằng 2.

Khi đó: $A_{\min}=2-\frac{5}{3.0+2}=\frac{-1}{2}$

9 tháng 3 2021

a, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n - 21-13-3
n315-1

b, Ta có :  \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}+1\ge1\)

Dấu ''='' xảy ra <=> n - 2 = 1 <=> n = 3

Vậy GTLN A là 1 khi n = 3

NM
4 tháng 5 2021

ta có \(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

Để A nguyên thì n-2 là ước của 3 hay 

\(n-2\in\left\{\pm1,\pm3\right\}\Leftrightarrow n\in\left\{-1,1,3,5\right\}\)

Để A có giá trị lớn nhất thì \(\frac{3}{n-2}\) đạt giá trị lớn nhất.

khi \(n-2>0\) và đạt giá trị nhỏ nhất

hay n=3.

2 tháng 3 2019

a)Gọi A=n+1/n+2

để A là số nguyên thì n+1 chia hết cho n - 2

 ta có : n+1= n-2+3 chia het cho n-2

mà n-2 chia hết cho n-2 nên 3 chia hết cho n-2

=> n-2 thuộc Ư(3)={-3;3;-1;1}

=>n thuộc { 3;1;-1;5}

vậy n thuộc {3;-1;1;5}

) ta có : A max

=> (n-2) min mà (n-2) thuộc Z

=>(n-2)>0

<=> (n-2 ) =1

<=> n=3

3 tháng 3 2019

Xin bạn Nguyễn Công Tỉnh nhìn kĩ đề n + 2 nhé. mk xin giải lại. Mk ko có ý coi thường nhé.

Đặt \(A=\frac{n+1}{n+2}\)

Để \(A\inℤ\) thì \(\left(n+1\right)⋮\left(n+2\right)\)

\(\Leftrightarrow\left(n+2-1\right)⋮\left(n+2\right)\)

Vì \(\left(n+2\right)⋮\left(n+2\right)\) nên \(1⋮\left(n+2\right)\)

\(\Rightarrow\left(n+2\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(TH1:n+2=-1\)

\(\Leftrightarrow n=-1-2\)

\(\Leftrightarrow n=-3\)

\(TH2:n+2=1\)

\(\Leftrightarrow n=1-2\)

\(\Leftrightarrow n=-1\)

Vậy \(n\in\left\{-3;-1\right\}\) thì \(\frac{n+1}{n+2}\) là số nguyên.

20 tháng 2 2018

\(A=\frac{n+1}{n-2}\)

\(A=\frac{n-2+3}{n-2}\)

\(A=1+\frac{3}{n-2}\)

\(\Leftrightarrow n-2\inƯ\left(3\right)\)

\(\Leftrightarrow n-2\in\left\{\pm1;\pm3\right\}\)

đến đây lập bảng là xong

17 tháng 3 2017

a) Ta có : A= (n+1)/(n-2) = (n-2 +3)/(n -2) = 1+ 3/(n-2)    Vậy để A nguyên thì (n-2) thuộc ước 3 ( +-1; +-3 )  <=> N-2 =1  <=> n =3                                                                                                                                                                        <=> N-2 =-1  <=> n= 1                                                                                                                                                                          <=> N-2 =3  <=> n= 5                                                                                                                                                                   <=> N-2 =-3  <=> n= -1

17 tháng 3 2017

b) ta có : A max => (n-2) min mà (n-2) thuộc Z =>(n-2)>0 <=> (n-2 ) =1 <=> n=3