K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

Ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)

<=>\(a+b\ge2\sqrt{ab}\)

Dấu ''='' xảy ra <=>\(\sqrt{a}-\sqrt{b}=0<=>\sqrt{a}=\sqrt{b}<=>a=b\)

Tick cho tui nha,bạn hiền

28 tháng 12 2015

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

9 tháng 6 2018

\(S=\frac{\sqrt{a-2}}{a}+\frac{\sqrt{b-6}}{b}+\frac{\sqrt{c-12}}{c}=\frac{\sqrt{2\left(a-2\right)}}{\sqrt{2}a}+\frac{\sqrt{6\left(b-6\right)}}{\sqrt{6}b}+\frac{\sqrt{12\left(c-12\right)}}{\sqrt{12}c}\)

\(\le\frac{\frac{2+a-2}{2}}{\sqrt{2}a}+\frac{\frac{6+b-6}{2}}{\sqrt{6}b}+\frac{\frac{12+c-12}{2}}{\sqrt{12}c}=\frac{a}{2\sqrt{2}a}+\frac{b}{2\sqrt{6}b}+\frac{c}{2\sqrt{12c}}\)(AM-GM)

\(=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{6}}+\frac{1}{2\sqrt{12}}\)

Dấu "=" xảy ra \(\Leftrightarrow a=4;b=12;c=24\)

26 tháng 7 2016

\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\)

<=>\(a+b-2\sqrt{ab}\ge0\)

<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

=>dpcm

20 tháng 4 2017

Hehe

1) Áp dụng hằng bất đẳng thức số 1: (a-b)^2>=0 với mọi a,b

=> a^2- 2ab+ b^2>= 0 với mọi a,b

=> a^2+2ab+ b^2>= 4ab với a,b>0

=> (a+b)^2> 4ab với a,b>0

=> a+b>= \(2\sqrt{ab}\)

Dấu = xảy ra <=> a-b=0 <=> a= b

Cái này là bất đẳng thức cô- si. lớp 8 được học rồi mà :D

2) Chắc thiếu đề :D

30 tháng 7 2018

mk giải 1 bài lm mẩu nha .

+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)

vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)

vậy giá trị nhỏ nhất của \(A\)\(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)

mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :

30 tháng 7 2018

lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :

DƯƠNG PHAN KHÁNH DƯƠNG

15 tháng 11 2016

Áp dụng BĐT Cauchy : \(\frac{\sqrt{\left(a-1\right).1}}{a}+\frac{\sqrt{\left(b-2\right).2}}{\sqrt{2}b}\le\frac{a-1+1}{2a}+\frac{b-2+2}{2\sqrt{2}b}=\frac{1}{2}+\frac{1}{2\sqrt{2}}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}a-1=1\\b-2=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=4\end{cases}}\)

Vậy max A = \(\frac{1}{2}+\frac{1}{2\sqrt{2}}\Leftrightarrow\left(a;b\right)=\left(2;4\right)\)

15 tháng 11 2016

25+38+56+98=217

26 tháng 11 2017

\(\Leftrightarrow a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Vì (a-b)2\(\ge\)0 luôn đúng nên \(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)

9 tháng 9 2018

 Giai

TS + 2 và  - 2/(a-b)

SD BĐT Cô si => đpcm

"=" a = (\(\frac{\sqrt{3}+1}{\sqrt{2}}\)) ; b = \(\frac{\sqrt{3}\text{-}1}{\sqrt{2}}\) và ngược lại 

9 tháng 9 2018

ko hiểu bn ak