Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=4a^2b^2-(a^2+b^2-c^2)^2=(2ab)^2-(a^2+b^2-c^2)^2\)
\(=(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)\)
\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)
Vì $a,b,c$ là 3 cạnh của tam giác nên theo BĐT tam giác ta có:
\(a+b-c>0; c-a+b>0; c+a-b>0\)
Và $a+b+c>0$ (hiển nhiên)
Do đó \(A=(a+b-c)(a+b+c)(c-a+b)(c+a-b)>0\)
Ta có đpcm.
444448888855555695+777+6666555888852652522222222222222222256585965
Đặt A=2a2b2+2c2a2+2b2c2 - a4 - b4 - c4
A= - ( a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2)
A= - (a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2 - 4(ca)2)
áp dụng hàng đẳng thức:
(a2-b2+c2)=a4+b4+c4-2(ab)2-2(bc)2+2(ca)2
A= - ( (a2-b2+c2)-4(ca)2)
A= - (a2-b2+c2-2ca) (a2-b2+c2+2ca)
CHÚC BẠN HỌC TỐT##
\(\frac{2b^2-c^2}{a^2}\ge4\Leftrightarrow2b^2-c^2\ge4a^2\)
\(\Leftrightarrow b^2\ge\frac{4a^2+c^2}{2}=2a^2+\frac{c^2}{2}\)
\(\Rightarrow a^2+b^2+c^2\ge a^2+c^2+2a^2+\frac{c^2}{2}=3a^2+\frac{3}{2}c^2\) (1)
Mặt khác \(2< a+c\Rightarrow4< \left(a+c\right)^2=\left(\sqrt{\frac{1}{3}}.\sqrt{3}a+\sqrt{\frac{2}{3}}.\sqrt{\frac{3}{2}}c\right)^2\le\left(\frac{1}{3}+\frac{2}{3}\right)\left(3a^2+\frac{3}{2}c^2\right)\)
\(\Rightarrow3a^2+\frac{3}{2}c^2>4\) (2)
(1);(2) \(\Rightarrow a^2+b^2+c^2>4\) (đpcm)
thanks <3