Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)
Lại áp dụng tương tự ta có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)
Từ (1) và (2) suy ra:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Bài 1:
Áp dụng BĐT Cô -si, ta có:
\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)
\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
Cộng vế theo vế ta được:
\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
p/s: không chắc lắm, có gì sai xót xin giúp đỡ
ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^
nè đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\
Đặt \(A=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)
Ta có : \(\frac{a}{b^2+c^2}=\frac{a}{3-a^2}=\frac{a}{\sqrt{\left(3-a^2\right)\left(3-a^2\right)}}=\frac{a^2}{a\sqrt{\left(3-a^2\right)\left(3-a^2\right)}}\)
\(=\frac{a^2\sqrt{2}}{\sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}}\)
Theo BĐT Cô - si ta có :
\(0< \sqrt[3]{2a^2.\left(3-a^2\right).\left(3-a^2\right)}\le\frac{2a^2+3-a^2+3-a^2}{3}=2\)
\(\Leftrightarrow0< 2a^2.\left(3-a^2\right)\left(3-a^2\right)\le8\)
\(\Leftrightarrow0< \sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}\le2\sqrt{2}\)
\(\Leftrightarrow\frac{a^2\sqrt{2}}{\sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}}\ge\frac{a^2\sqrt{2}}{2\sqrt{2}}=\frac{a^2}{2}\)
Hay : \(\frac{a}{b^2+c^2}\ge\frac{a^2}{2}\)
Chứng minh tương tự ta có : \(\frac{b}{c^2+a^2}\ge\frac{b^2}{2};\frac{c}{a^2+b^2}\ge\frac{c^2}{2}\)
Do đó : \(A\ge\frac{1}{2}\left(a^2+b^2+c^2\right)=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy \(Min\) \(A=\frac{3}{2}\) khi \(a=b=c=1\)
Gọi biểu thức là N
Dự đoán \(MinN=\frac{3}{2}\)khi a = b = c = 1, ta dùng UCT giải quyết bài toán
Ta viết lại \(N=\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\)(do \(a^2+b^2+c^2=3\)theo giả thiết)
Xét bất đẳng thức phụ \(\frac{a}{3-a^2}\ge\frac{a^2}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{a\left(a+2\right)\left(a-1\right)^2}{2\left(3-a^2\right)}\ge0\)(Đúng vì \(3-a^2=b^2+c^2>0\)và a > 0)
Tương tự: \(\frac{b}{3-b^2}\ge\frac{b^2}{2}\)(1); \(\frac{c}{3-c^2}\ge\frac{c^2}{2}\)(2)
Cộng theo vế ba bất đẳng thức (*), (1) và (2), ta được: \(\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{a^2+b^2+c^2}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c = 1