Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)
nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x
2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)
mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha
Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai
Câu 2 sai đề. chứng minh như sau;
Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)
\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\)
Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)
\(\Leftrightarrow0,25>0,5\) => vô lí
a) Ta có:
(a + b)2 >= 0 => a2 + b2 >= -2ab
(a - 1)2 >= 0 => a2 + 1 >= 2a
(b - 1)2 >= 0 => b2 + 1 >= 2b
Cộng từng vế ta được: 2a2 +2b2 +2 >= -2ab + 2a +2b => a2 + b2 + 1 >= -ab + a + b
Dấu "=" xảy ra khi a= - b; a = 1; b = 1 không đạt được nên không xảy ra dấu bằng do đó:
a2 + b2 + 1 > -ab + a + b .đpcm.
b) a + b + c = 0 => a + b = -c => (a + b)3 = -c3 => a3 + 3a2b +3 ab2 + b3 = -c3
=> a3 + b3 + c3 = -3ab(a + b) (*)
Mà a + b + c = 0 => a + b = -c
=> (*) <=> a3 + b3 + c3 = 3abc .đpcm.
oh my dog toán lớp 8 đây á
mik làm đc hình như mỗi câu a thôi thì phải
Đề đúng : CMR \(a^2+ab+b^2< 1\)
Ta có : Với mọi a > b > 0 thì \(a^3+b^3>a^3-b^3\)
\(\Rightarrow a-b>a^3-b^3\). Vì a - b > 0 , chia cả hai vế của bất đẳng thức cho (a-b) được :
\(a^2+ab+b^2< 1\)(đpcm)
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(=\left(a-b+b-c\right)\left[\left(a-b\right)^2-\left(a-b\right)\left(b-c\right)+\left(b-c\right)^2\right]+\left(c-a\right)^3\)
\(=\left(a-c\right)\left[\left(a-b\right)^2-\left(a-b\right)\left(b-c\right)+\left(b-c\right)^2\right]-\left(a-c\right)^3\)
\(=\left(a-c\right)\left[\left(a-b\right)^2-\left(a-b\right)\left(b-c\right)+\left(b-c\right)^2-\left(a-c\right)^2\right]\)
\(=\left(a-c\right)\left[\left(a-b\right)\left(a-b-b+c\right)+\left(b-c+a-c\right)\left(b-c-a+c\right)\right]\)
\(=\left(a-c\right)\left[\left(a-b\right)\left(a-2b+c\right)+\left(a+b-2c\right)\left(b-a\right)\right]\)
\(=\left(a-c\right)\left[\left(a-b\right)\left(a-2b+c\right)-\left(a+b-2c\right)\left(a-b\right)\right]\)
\(=\left(a-c\right)\left(a-b\right)\left(a-2b+c-a-b+2c\right)\)
\(=-\left(c-a\right)\left(a-b\right)\left(-3b+3c\right)\)
\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Vì a > b > c nên a - b > 0 ; b - c > 0 ; c - a < 0
Do đó \(3\left(a-b\right)\left(b-c\right)\left(c-a\right)< 0\) hay \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3< 0\) (đpcm)