K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

ta có: \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{2003.a^2}{2003.b^2}=\frac{2004.c^2}{2004.d^2}\) (*)

mà \(\frac{2003.a^2}{2003.b^2}=\frac{2004.c^2}{2004.d^2}=\frac{2003.a^2+2004.c^2}{2003.b^2+2004.d^2}\)

Từ (*) \(\Rightarrow\frac{a^2}{b^2}=\frac{2003.a^2+2004.c^2}{2003.b^2+2004.d^2}\)

\(\Rightarrow\frac{2003.b^2+2004.d^2}{b^2}=\frac{2003.a^2+2004.c^2}{a^2}\left(đpcm\right)\)

19 tháng 10 2016

Đặt a/2003 = b/2004 = c/2005 = k

=> a=2003k

b=2004k

c=2005k

Thay các giá trị a,b,c trên vào  4(a-b)(b-c) = (c-a)2.Ta có:

4(a-b)(b-c)=4(2003k - 2004k)(2004k-2005k)=4.(-1k).(-1k)=4k2       (1)

(c-a)=(2005k-2003k)2=(2k)2= 4k2               (2)

Từ (1) và (2) suy ra 4(a-b)(b-c) = (c-a)2

(k) đúng cho mình nhé!

nhưng sao cách giải bài

này lai thế mình

có cách giải khác

mà tuy ko giống nhưng giống

kết qyar

28 tháng 7 2018

MÌNH QUÊN cách lm rùi

28 tháng 7 2018

đặt B=99/1+99/2+...+1/99

=1+(98/2+1)+(97/3+1)+...+(1/99+1)

=100/100+100/2+...+100/99

=100.(1/2+1/3+...+1/100)

=>A=(1/2+1/3+...+1/100):[100.(1/2+1/3+...+1/100)]

A=1:100=1/100

hok tốt nha

17 tháng 7 2015

3A = 3 - 3^2 + 3^3 - 3^4 + ... -3^2004 + 3^2005

3A + A = 3 - 3^2 + 3^3 -3^4 + ... -3^2004 + 3^2005 +1 - 3 + 3^2- 3^3 + 3^4 - ....-3^2003+3^2004

      4A      = 3^2005 + 1

=> 4A  - 1 = 3^2005 là lũy thừa của 3  => ĐPCM

16 tháng 11 2017

Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải. 

Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2

\(\dfrac{a+2003}{a-2003}=\dfrac{b-2004}{b+2004}\)

\(\Leftrightarrow\left(a+2003\right)\left(b+2004\right)=\left(a-2003\right)\left(b-2004\right)\)

\(\Leftrightarrow ab+2004a+2003a+2003\cdot2004=ab-2004a-2003a+2003\cdot2004\)

\(\Leftrightarrow4008a=4006b\)

=>a/b=2003/2004

hay a/2003=b/2004