Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt (x3;y3;z3)=(a;b;c)(x,y,z>0)(x3;y3;z3)=(a;b;c)(x,y,z>0)
⇒xyz=1⇒xyz=1
Ta cần chứng minh
1x3+y3+1+1y3+z3+1+1z3+x3+1≤11x3+y3+1+1y3+z3+1+1z3+x3+1≤1
Áp dụng AM-GM, ta có: x3+y3+1=(x+y)(x2−xy+y2)+xyzx3+y3+1=(x+y)(x2−xy+y2)+xyz
≥(x+y)xy+xyz=xy(x+y+z)≥(x+y)xy+xyz=xy(x+y+z)
⇒1x3+y3+1≤1xy(x+y+z)⇒1x3+y3+1≤1xy(x+y+z)
Tương tự: 1y3+z3+1≤1yz(x+y+z)1y3+z3+1≤1yz(x+y+z)
1z3+x3+1≤1zx(x+y+z)1z3+x3+1≤1zx(x+y+z)
Cộng vế theo vế, ta được
....≤1x+y+z(1xy+1yz+1xz)=1x+y+z.x+y+zxyz=1xyz=1....≤1x+y+z(1xy+1yz+1xz)=1x+y+z.x+y+zxyz=1xyz=1
Vậy ta có đpcm
Đẳng thức xảy ra khi a=b=c=1
a. \(a^3+a^2c-abc+b^2c+b^3\)
<=> \(\left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)\)
<=> (\(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
<=> \(\left(a+b+c\right)\left(a^2-ab+b^2\right)\)
vì a+b+c =0 => đpcm
b. 2(a+1)(b+1)=(a+b)(a+b+2)
<=> \(2\left(ab+a+b+1\right)=\)\(a^2+ab+2a+ab+b^2+2b\)
<=> \(2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b\)
<=> \(a^2+b^2=2\)=> đpcm
Ta có :
\(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2+b^2-ab\right)\)
\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)\)
\(=0.\left(a^2-ab+b^2\right)=0\left(đ\text{pcm}\right)\)