Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔBAC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)
=>AB/BC=1/2
hay AB=1/2BC
Câu 4:
Ta có: AM=1/2BC
nên AM=BM=CM
Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{B}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{C}\)
Xét ΔABC có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)
=>\(2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)
=>\(\widehat{BAC}=90^0\)
Ta có :
\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{abc}{aabc+abc+ab}\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{1}{a+1+ab}\)
\(A=\dfrac{a+ab+1}{ab+a+1}\)
\(\Rightarrow A=1\left(đpcm\right)\)
Từ đề bài:A=\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}=\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}=abc\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=8\cdot\dfrac{3}{4}=6\)
\(A=\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\)
\(=\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}\\ =abc\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\\ =8\cdot\dfrac{3}{4}\\ =6\)
\(B=\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}=\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+abc}+\dfrac{ab}{ab+abc+abca}\)
vì abc =1 nên B=\(\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+1}+\dfrac{ab}{ab+1+a}=\dfrac{1+a+ab}{a+1+ab}=1\)
chúc bạn học tót ^^
Lời giải:
Thay $abc=1$ ta có:
\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)
\(=\frac{c}{c+a.c+ab.c}+\frac{ac}{ac+b.ac+bc.ac}+\frac{1}{1+c+ca}\)
\(=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ca}=\frac{c+ca+1}{1+c+ca}=1\)
a: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}=\dfrac{BC^2}{\left(AB\cdot AC\right)^2}\)
\(\Leftrightarrow AH^2\cdot BC^2=AB^2\cdot AC^2\)
hay \(AH\cdot BC=AB\cdot AC\)(luôn đúng)
b: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)
\(M=\dfrac{1}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{abc+bc+b}\)
\(\Leftrightarrow M=\dfrac{1}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{a}{a+1+ab}\)
\(\Leftrightarrow M=\dfrac{1+ab+a}{ab+a+1}=1\)