\(\dfrac{a}{b+c+a}+\dfrac{b}{c+a-b}+\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

câu 1 :Đặt b+c-a=x; a+c-b=y ; a+b-c=z

vì a,b,c là 3 cạnh của tam giác nên

b+c-a>0 ; a+c-b>0 ; a+b-c>0

Đặt biểu thức \(\dfrac{a}{b +c-a}\)+\(\dfrac{b}{c+a-b}\)+\(\dfrac{c}{a+b-c}\)=S thì

2S=\(\dfrac{2a}{b+c-a}\)+\(\dfrac{2b}{c+a-b}\)+\(\dfrac{2c}{a+b-c}\)

\(\dfrac{2a}{b+c-a}\)=\(\dfrac{a+c-b+a+b-c}{b+c-a}\)=\(\dfrac{y+z}{x}\) , tương tự

\(\dfrac{2b}{c+a-b}\)=\(\dfrac{x+z}{y}\)

\(\dfrac{2c}{a+b-c}\)=\(\dfrac{x+y}{z}\)

=>2S=\(\dfrac{x+y}{z}\)+\(\dfrac{y+z}{x}\)+\(\dfrac{x+z}{y}\)=\(\dfrac{x}{z}\)+\(\dfrac{y}{z}\)+\(\dfrac{y}{x}\)+\(\dfrac{z}{x}\)+\(\dfrac{x}{y}\)+\(\dfrac{z}{y}\)

ta thấy \(\dfrac{x}{z}\)+\(\dfrac{z}{x}\)=\(\dfrac{x^{2^{ }}+z^2}{xz}\)\(\ge\)\(\dfrac{2xz}{xz}\)=2 tương tự với 2 cặp số nghich đảo còn lại thì ta có 2S\(\ge\)2+2+2=6

nên S\(\ge\)3

dấu = xảy ra \(\Leftrightarrow\)x=y=z

câu 2 :

ta có a+b>c ;b+c>a ; a+c>b

xét \(\dfrac{1}{a+c}\)+\(\dfrac{1}{b+c}\)>\(\dfrac{1}{a+b+c}\)+\(\dfrac{1}{b+c+a}\)=\(\dfrac{2}{a+b+c}\)>\(\dfrac{2}{a+b+a+b}\)=\(\dfrac{1}{a+b}\)

tương tự \(\dfrac{1}{a+b}\)+\(\dfrac{1}{a+c}\)>\(\dfrac{1}{b+c}\);\(\dfrac{1}{a+b}\)+\(\dfrac{1}{b+c}\)>\(\dfrac{1}{a+c}\)

nên điều phải chứng minh

24 tháng 4 2017

Giúp tớ với các cậu ơi.... khocroi

a)a,b,c là độ dài 3 cạnh của 1 tam giác

\(\Rightarrow a< b+c\Rightarrow a^2< ab+ac\)

TT\(\Rightarrow b^2< ba+bc\)

\(c^2< ca+cb\)

Cộng vế theo vế ta có đpcm

b)BĐT\(\Leftrightarrow\dfrac{a}{b+c-a}+\dfrac{1}{2}+\dfrac{b}{a+c-b}+\dfrac{1}{2}+\dfrac{c}{a+b-c}+\dfrac{1}{2}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{a+b+c}{b+c-a}+\dfrac{a+b+c}{a+c-b}+\dfrac{a+b+c}{a+b-c}\right)\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge9\)(đúng theo AM-GM)

6 tháng 11 2018

Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé!

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 3:

a) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)

\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)

Theo BĐT AM-GM:

\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)

Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 1: Thiếu đề.

Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)

Bài 4 a) Sai đề với \(x<0\)

b) Áp dụng BĐT AM-GM:

\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)

Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)

Bài 6: Áp dụng BĐT AM-GM cho $6$ số:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d=1\)

10 tháng 8 2017

5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y

Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

Vậy ta suy ra đpcm

b) Ta có: a+b>c;b+c>a;a+c>b

Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

.Tương tự:

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy ta có đpcm

10 tháng 8 2017

6) Ta có:

\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)

\(ab+cd=ab+\dfrac{1}{ab}\ge2\)

Suy ra đpcm

28 tháng 5 2017

Đề phải là \(\ge\)

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}=\dfrac{1}{\dfrac{-a+b+c}{2}}+\dfrac{1}{\dfrac{a-b+c}{2}}+\dfrac{1}{\dfrac{a+b-c}{2}}=2\left(\dfrac{1}{-a+b+c}+\dfrac{1}{a-b+c}+\dfrac{1}{a+b-c}\right)\)

Áp dụng BĐT trong tam giác:

a+b>c=>a+b-c>0

a+c>b=>a-b+c>0

b+c>a=>-a+b+c>0

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)cho 2 số dương:

\(\dfrac{1}{-a+b+c}+\dfrac{1}{a-b+c}\ge\dfrac{4}{2c}=\dfrac{2}{c}\)

Dấu = xảy ra khi -a+b+c=a-b+c<=>a=b

\(\dfrac{1}{a-b+c}+\dfrac{1}{a+b-c}\ge\dfrac{4}{2a}=\dfrac{2}{a}\)

Dấu = xảy ra khi a-b+c=a+b-c<=>b=c

\(\dfrac{1}{a+b-c}+\dfrac{1}{-a+b+c}\ge\dfrac{4}{2b}=\dfrac{2}{b}\)

Dấu = xảy ra khi a+b-c=-a+b+c<=>a=c

=>\(2\left(\dfrac{1}{-a+b+c}+\dfrac{1}{a-b+c}+\dfrac{1}{a+b-c}\right)\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

Hay \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)<=>tam giác ABC đều

1 tháng 7 2017

surf trc khi hỏi Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến

1 tháng 7 2017

Giải:

Ta có BĐT phụ: \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

Áp dụng BĐT Cauchy - Schwarz ta có:

\(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\)

\(\ge3\sqrt[3]{\dfrac{abc}{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)

\(\ge3\sqrt[3]{\dfrac{abc}{abc}}\ge3\) (Đpcm)


3 tháng 4 2018

B1:

\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Xét hiệu:

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\)

\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

=> BĐT luôn đúng

*

Ta có:

\(a< b+c\Rightarrow a^2< ab+ac\)

\(b< a+c\Rightarrow b^2< ab+ac\)

\(c< a+b\Rightarrow a^2< ac+bc\)

Cộng từng vế bất đẳng thức ta được:

\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Vậy: \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

3 tháng 4 2018

B2:

Ta có: \(a+b>c\) ; \(b+c>a\); \(a+c>b\)

Xét:\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{a+b+c}+\dfrac{1}{a+c+b}=\dfrac{2}{a+b+c}>\dfrac{2}{b+c+b+c}=\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+c+a+c}=\dfrac{1}{a+c}\)

Suy ra:

\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

=> ĐPCM

3 tháng 7 2018

\(1.\) Giả sử : \(a\ge b\ge c\Rightarrow a+b\ge a+c\ge b+c\)

Ta có : \(\dfrac{c}{a+b}\le\dfrac{c}{b+c};\dfrac{b}{a+c}\le\dfrac{b}{b+c};\dfrac{a}{b+c}=\dfrac{a}{b+c}\)

\(\Rightarrow\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\le\dfrac{b+c}{b+c}+\dfrac{a}{b+c}=1+\dfrac{a}{b+c}< 1+1=2\left(đpcm\right)\)

\(2.\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{yz+xz+xy}{xyz}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\left(x+y+z\right)\left(xy+yz+xz\right)=xyz\)

\(\Leftrightarrow x^2y+x^2z+xy^2+y^2z+xyz+xyz+yz^2+xz^2=0\)

\(\Leftrightarrow xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)y\left(x+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

+) Với : \(x=-y\) , ta có :

Đpcm \(\Leftrightarrow-\dfrac{1}{y^{2011}}+\dfrac{1}{y^{2011}}+\dfrac{1}{z^{2011}}=\dfrac{1}{-y^{2011}+y^{2011}+z^{2011}}\)

\(\Leftrightarrow\dfrac{1}{z^{2011}}=\dfrac{1}{z^{2011}}\left(luôn-đúng\right)\)

Tương tự với 2 TH còn lại .

\(\RightarrowĐCPM\)

6 tháng 4 2017

a. Xét hiệu: \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\)

=\(\dfrac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\)

\(=\dfrac{a^2-2ab+b^2}{ab\left(a+b\right)}=\dfrac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

Vì a,b>0

Xảy ra đẳng thức khi và chỉ khi a=b

6 tháng 4 2017

a) Ta có: \(\left(a-b\right)^2\ge0\left(1\right)\forall a,b\)

( Dấu = xày ra khi và chỉ khi a=b)

Cộng 4ab vào 2 vế, ta có:

\(\left(a-b\right)^2+4ab\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)

Chia 2 vế cho ab(a+b)>0, ta có:

\(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\)\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

b) Ta có:

\(2p=a+b+c\)

\(p-a=\dfrac{a+b+c}{2}-a=\dfrac{b+c-a}{2}>0\) vì b+c>a

Tương tự: \(p-b>0,p-c>0\)

Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)cho từng cặp số p-a, p-b; p-b,p-c;p-c,p-a

Ta có:

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{\left(p-a\right)+\left(p-b\right)}=\dfrac{4}{2p-\left(a+b\right)}=\dfrac{4}{c}\left(1\right)\)

Tương tự:

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a}\left(2\right)\)

\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{b}\left(3\right)\)

Cộng các BĐT cùng chiều (1), (2), (3) vế theo vế, ta có:

\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Do đó: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)