K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Đề: Cho a, b, c, d là 4 số dương thoả mãn abcd = 1. Chứng minh rằng: \(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\ge8\)

~ ~ ~ ~ ~

Áp dụng BĐT AM - GM, ta có:

\(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\)

\(\ge2\sqrt[4]{\left(1+a\right)\left(1+b\right)}\times2\sqrt[4]{\left(1+c\right)\left(1+d\right)}\)

\(=4\sqrt[4]{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)

\(\ge4\sqrt[4]{2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}\times2\sqrt{d}}\)

\(=4\sqrt[4]{16\sqrt{abcd}}\)

= 8 (đpcm)

Dấu "=" xảy ra khi a = b = c = d = 1

8 tháng 4 2020

a) ta có

\(a\left(a+d\right)-a\left(b+c\right)=a^2+ad-ab-ac=a^2+bc-ab-ac=\left(a-b\right)\left(a-c\right)>0\)

do đó \(a\left(a+d\right)>a\left(b+c\right)\Leftrightarrow a+d>b+c\)

b) ta có 

\(1\ge\left(\sqrt{d}-\sqrt{a}\right)^2=a+d-2\sqrt{ad}=>2\sqrt{ad}\ge a+d-1\)

mặt khác \(2\sqrt{ad}=2\sqrt{bc}\le b+c\)

suy ra \(b+c\ge a+d-1>b+c-1.DO\left(a+d-1\right)\)là số nguyên nên a+d-1=b+c

do đó

\(2\sqrt{ad}=a+d-1\Leftrightarrow\sqrt{d}-\sqrt{a}=1\Leftrightarrow\sqrt{d}=\sqrt{a}+1\)

bình phương 2 zế ta có

\(d=a+2\sqrt{a}+1\Leftrightarrow\sqrt{a}=\frac{d-a-1}{2}\)

do đó căn a là số hữu tỷ . MÀ a là số nguyên dương nên căn a là số nguyên . zì zậy a là số chính phương

8 tháng 4 2020

Tks nhiều ạ @@

27 tháng 12 2017

a)

\(7\sqrt{12}+\frac{1}{3}\sqrt{27}-\sqrt{75}\)

\(=14\sqrt{3}+\sqrt{3}-5\sqrt{3}\)

\(=10\sqrt{3}\)

b)

\(\left(2\sqrt{20}+\sqrt{125}-3\sqrt{80}\right):5\)

\(=\left(4\sqrt{5}+5\sqrt{5}-12\sqrt{5}\right):5\)

\(=-3\sqrt{5}:5\)

\(=\frac{-3\sqrt{5}}{5}\)

c)

\(3\sqrt{12a}-5\sqrt{3a}+\sqrt{48a}\)

\(=6\sqrt{3a}-5\sqrt{3a}+4\sqrt{3a}\)

\(=5\sqrt{3a}\)