Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề: Cho a, b, c, d là 4 số dương thoả mãn abcd = 1. Chứng minh rằng: \(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\ge8\)
~ ~ ~ ~ ~
Áp dụng BĐT AM - GM, ta có:
\(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\)
\(\ge2\sqrt[4]{\left(1+a\right)\left(1+b\right)}\times2\sqrt[4]{\left(1+c\right)\left(1+d\right)}\)
\(=4\sqrt[4]{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)
\(\ge4\sqrt[4]{2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}\times2\sqrt{d}}\)
\(=4\sqrt[4]{16\sqrt{abcd}}\)
= 8 (đpcm)
Dấu "=" xảy ra khi a = b = c = d = 1
a) ta có
\(a\left(a+d\right)-a\left(b+c\right)=a^2+ad-ab-ac=a^2+bc-ab-ac=\left(a-b\right)\left(a-c\right)>0\)
do đó \(a\left(a+d\right)>a\left(b+c\right)\Leftrightarrow a+d>b+c\)
b) ta có
\(1\ge\left(\sqrt{d}-\sqrt{a}\right)^2=a+d-2\sqrt{ad}=>2\sqrt{ad}\ge a+d-1\)
mặt khác \(2\sqrt{ad}=2\sqrt{bc}\le b+c\)
suy ra \(b+c\ge a+d-1>b+c-1.DO\left(a+d-1\right)\)là số nguyên nên a+d-1=b+c
do đó
\(2\sqrt{ad}=a+d-1\Leftrightarrow\sqrt{d}-\sqrt{a}=1\Leftrightarrow\sqrt{d}=\sqrt{a}+1\)
bình phương 2 zế ta có
\(d=a+2\sqrt{a}+1\Leftrightarrow\sqrt{a}=\frac{d-a-1}{2}\)
do đó căn a là số hữu tỷ . MÀ a là số nguyên dương nên căn a là số nguyên . zì zậy a là số chính phương
a)
\(7\sqrt{12}+\frac{1}{3}\sqrt{27}-\sqrt{75}\)
\(=14\sqrt{3}+\sqrt{3}-5\sqrt{3}\)
\(=10\sqrt{3}\)
b)
\(\left(2\sqrt{20}+\sqrt{125}-3\sqrt{80}\right):5\)
\(=\left(4\sqrt{5}+5\sqrt{5}-12\sqrt{5}\right):5\)
\(=-3\sqrt{5}:5\)
\(=\frac{-3\sqrt{5}}{5}\)
c)
\(3\sqrt{12a}-5\sqrt{3a}+\sqrt{48a}\)
\(=6\sqrt{3a}-5\sqrt{3a}+4\sqrt{3a}\)
\(=5\sqrt{3a}\)
Cố gắng giúp mik nhé. Mik đang ôn thi