K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2020

\(ab\le\frac{a^2+b^2}{2}\le\frac{16}{2}=8\)

Ta có: \(N^2=\left(a\sqrt{9b\left(a+8b\right)}+b\sqrt{9a\left(b+8a\right)}\right)^2\)

\(\le\left(a^2+b^2\right)\left[9b\left(a+8b\right)+9a\left(b+8a\right)\right]\)

\(\le16\left(18ab+72\left(a^2+b^2\right)\right)\le16\left(18.8+72.16\right)\)

\(=20736\)

=> \(N\le144\)

Dấu "=" xảy ra <=> a = b = \(\sqrt{8}\)

Vậy max N = 144 tại a = b = \(\sqrt{8}\)

4 tháng 10 2018

By C-S and AM-GM's inequality

\(M=a\left(9b\left(a+8b\right)\right)^{\dfrac{1}{2}}+b\left(9a\left(b+8a\right)\right)^{\dfrac{1}{2}}\)

\(\le\left(\left(a^2+b^2\right)\left(9b\left(a+8b\right)+9a\left(b+8a\right)\right)\right)^{\dfrac{1}{2}}\)

\(=\left(\left(a^2+b^2\right)\left(18ab+72b^2+72a^2\right)\right)^{\dfrac{1}{2}}\)

\(=\left(\left(a^2+b^2\right)\left(18\cdot\dfrac{a^2+b^2}{2}+72b^2+72a^2\right)\right)^{\dfrac{1}{2}}\)

\(=\left(16\cdot\left(18\cdot\dfrac{16}{2}+72\cdot16\right)\right)^{\dfrac{1}{2}}=144\)

\("="\Leftrightarrow a=b=2\sqrt{2}\)

NV
12 tháng 3 2019

Ta có \(2ab\le a^2+b^2\)

Áp dụng BĐT Bunhia:

\(M^2\le\left(a^2+b^2\right)\left(b\left(a+8b\right)+a\left(b+8a\right)\right)\)

\(\Rightarrow M^2\le\left(a^2+b^2\right)\left(2ab+8b^2+8a^2\right)\)

\(\Rightarrow M^2\le\left(a^2+b^2\right)\left(8a^2+8b^2+a^2+b^2\right)\)

\(\Rightarrow M^2\le9\left(a^2+b^2\right)^2\Rightarrow M\le3\left(a^2+b^2\right)=48\)

\(\Rightarrow M_{max}=48\) khi \(a=b=2\sqrt{2}\)

AH
Akai Haruma
Giáo viên
2 tháng 9 2017

Bài 1:

Áp dụng BĐT Bunhiacopxky:

\(M^2=(a\sqrt{9b(a+8b)}+b\sqrt{9a(b+8a)})^2\)

\(\leq (a^2+b^2)(9ab+72b^2+9ab+72a^2)\)

\(\Leftrightarrow M^2\leq (a^2+b^2)(72a^2+72b^2+18ab)\)

Áp dụng BĐT AM-GM: \(a^2+b^2\geq 2ab\Rightarrow 18ab\leq 9(a^2+b^2)\)

Do đó, \(M^2\leq (a^2+b^2)(72a^2+72b^2+9a^2+9b^2)=81(a^2+b^2)^2\)

\(\Leftrightarrow M\leq 9(a^2+b^2)\leq 144\)

Vậy \(M_{\max}=144\Leftrightarrow a=b=\sqrt{8}\)

Bài 6:

\(a+\frac{1}{a-1}=1+(a-1)+\frac{1}{a-1}\)

\(a>1\rightarrow a-1>0\). Do đó áp dụng BĐT Am-Gm cho số dương\(a-1,\frac{1}{a-1}\) ta có:

\((a-1)+\frac{1}{a-1}\geq 2\sqrt{\frac{a-1}{a-1}}=2\)

\(\Rightarrow a+\frac{1}{a-1}=1+(a-1)+\frac{1}{a-1}\geq 3\) (đpcm)

Dấu bằng xảy ra khi \(a-1=1\Leftrightarrow a=2\)

AH
Akai Haruma
Giáo viên
2 tháng 9 2017

Bài 3:

Xét \(\sqrt{a^2+1}\). Vì \(ab+bc+ac=1\) nên:

\(a^2+1=a^2+ab+bc+ac=(a+b)(a+c)\)

\(\Rightarrow \sqrt{a^2+1}=\sqrt{(a+b)(a+c)}\)

Áp dụng BĐT AM-GM có: \(\sqrt{(a+b)(a+c)}\leq \frac{a+b+a+c}{2}=\frac{2a+b+c}{2}\)

hay \(\sqrt{a^2+1}\leq \frac{2a+b+c}{2}\)

Hoàn toàn tương tự với các biểu thức còn lại và cộng theo vế:

\(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\leq \frac{2a+b+c}{2}+\frac{2b+a+c}{2}+\frac{2c+a+b}{2}=2(a+b+c)\)

Ta có đpcm. Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Bài 4:

Ta có:

\(A=\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2\)

\(\Leftrightarrow A+\frac{1}{4}=2a+\frac{b+a}{4a}+b^2=2a+b+\frac{b+a}{4a}+b^2-b\)

\(a+b\geq 1, a>0\) nên \(A+\frac{1}{4}\geq a+1+\frac{1}{4a}+b^2-b\)

Áp dụng BĐT AM-GM:

\(a+\frac{1}{4a}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\Rightarrow A+\frac{1}{4}\geq 2+b^2-b=\left(b-\frac{1}{2}\right)^2+\frac{7}{4}\geq \frac{7}{4}\)

\(\Leftrightarrow A\geq \frac{3}{2}\).

Vậy \(A_{\min}=\frac{3}{2}\Leftrightarrow a=b=\frac{1}{2}\)

30 tháng 9 2018

Áp dụng BĐT Cô-si cho 2 số không âm

Ta có: \(\sqrt{9b\left(4a+b\right)}\)\(\le\) \(\dfrac{9b+4a+5b}{2}\)=\(\dfrac{14b+4a}{2}\)

\(\Rightarrow\) \(a\sqrt{9b\left(4a+5b\right)}\)\(\le\) \(\dfrac{14ab+4a^2}{2}\)=7ab+2a2

CMTT: \(b\sqrt{9a\left(4b+5a\right)}\) \(\le\) 7ab+2b2

\(\Rightarrow\) M\(\le\) 14ab + 2(a2+b2) \(\le\)7(a2+b2) + 2(a2+b2) = 9(a2+b2)=18

Vậy Mmin=18

Dấu "=" xảy ra\(\Leftrightarrow\) a=b=1

30 tháng 9 2018

\(M=a\sqrt{9b\left(4a+5b\right)}+b\sqrt{9a\left(4b+5a\right)}\le\dfrac{a\left(9b+4a+5b\right)}{2}+\dfrac{b\left(9a+4b+5a\right)}{2}=\dfrac{a\left(14b+4a\right)+b\left(14a+4b\right)}{2}=2a^2+7ab+7ab+2b^2=2\left(a^2+b^2\right)+14ab=4+14ab\le4+14\times\dfrac{a^2+b^2}{2}=4+14=18\)

Dấu "=" xảy ra <=> a = b = 1

21 tháng 4 2016

Áp dụng 2 lần Bunhia

15 tháng 10 2016

Ta có \(2=a^2+b^2\ge2ab\)

\(\Leftrightarrow ab\le1\)

\(M\le\sqrt{\left(a^2+b^2\right)\left(36ab+45b^2+36ab+45a^2\right)}\)

\(=\sqrt{2\left(72ab+90\right)}\)\(\le\sqrt{2\left(72+90\right)}=\sqrt{324}=18\)

GTLN là 18 đạt được khi a = b = 1

AH
Akai Haruma
Giáo viên
17 tháng 11 2019

Lời giải:

Sửa đề: \(\frac{1}{(a+b+\sqrt{2(a+c)})^3}+\frac{1}{(b+c+\sqrt{2(b+a)})^3}+\frac{1}{(c+a+\sqrt{2(b+c)})^3}\leq \frac{8}{9}\)

--------------------------

Áp dụng BĐT AM-GM:

\(a+b+\sqrt{2(a+c)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\geq 3\sqrt[3]{\frac{(a+b)(a+c)}{2}}\)

\(\Rightarrow [a+b+\sqrt{2(a+c)}]^3\geq \frac{27}{2}(a+b)(a+c)\)

\(\Rightarrow \frac{1}{(a+b+\sqrt{2(a+c)})^3}\leq \frac{2}{27(a+b)(a+c)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\leq \frac{4(a+b+c)}{27(a+b)(b+c)(c+a)}(1)\)

Lại theo BĐT AM-GM:

\((a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8}{9}(a+b+c)(ab+bc+ac)(2)\)

Và:

\(16(a+b+c)\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\geq \frac{3(a+b+c)}{ab+bc+ac}\)

\(\Rightarrow ab+bc+ac\geq \frac{3}{16}(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\leq \frac{1}{6(ab+bc+ac)}\leq \frac{1}{6.\frac{3}{16}}=\frac{8}{9}\) (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 11 2019

Dấu "=" xảy ra khi $a=b=c=\frac{1}{4}$