K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

Ta có 1/4(a+b)=a^2+b^2-ab>=(a+b)^2-3((a+b)^2/4)=(a+b)^2/4

=>0=<a+b=<1

Mặt khác A=<20(a+b)(a^2+b^2-ab)-6((a+b)^2/2)+2013

=>A=<20(a+b)((a+b)/4)-3(a+b)^2+2013=2(a+b)^2+2013=<2015

=>Amin=2015 khi a=b=1/2

4 tháng 6 2019

#)Giải :

Ta có : \(P=a^4+b^4+2-2-ab\)

Áp dụng BĐT cô si, ta có : 

\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1

\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1

Khi đó \(P\ge2a^2+2b^2-2-ab\)

           \(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)

           \(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)

Mặt khác \(a^2+b^2\ge2ab\)

Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)

\(\Rightarrow ab\le1\)(2)

Từ (1) và (2)

Ta có : \(P\ge4-3ab\ge4-3=1\)

Vậy P đạt GTNN là 1 khi a = b = 1

                #~Will~be~Pens~#

28 tháng 2 2018

Xét : a^3/a^2+b^2

= (a^3+ab^2)/a^2+b^2 - ab^2/a^2+b^2

= a - ab^2/a^2+b^2

>= a - ab^2/2ab

  = a - b/2

Tương tự : b^3/b^2+c^2 >= b  - c/2 và c^3/c^2+a^2 >= c - a/2

=> P >= a+b+c-(a+b+c)/2 = a+b+c/2 = 3/2

Dấu "=" xảy ra <=> a=b=c=1

Vậy GTNN của P = 3/2 <=> a=b=c=1

Tk mk nha

22 tháng 7 2017

P=\(\left(a^2+b^2+c^2+2ab+2ac+2bc\right)+4\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\)\(+a^3+b^3+c^3-2\left(a^2b+b^2c+c^2a\right)+ab^2+bc^2+ca^2\)\(=1+4\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\left(a+b+c\right)+\left(a^3+b^3+c^3\right)\)\(-2\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)\)\(=1+4\left(ab+bc+ca\right)-3\left(a^2b+b^2c+c^2a\right)\)

Mà \(\left(a^2b+b^2c+c^2a\right)\left(b+c+a\right)\ge\left(ab+bc+ca\right)^2\)

=> \(P\le1+4\left(ab+bc+ca\right)-3\left(ab+bc+ca\right)^2\). Đặt \(ab+bc+ca=t\le\frac{1}{3}\)

=> \(P\le-3\left(t^2-\frac{2}{3}t+\frac{1}{9}\right)+2t+\frac{4}{3}\le-3\left(t-\frac{1}{3}\right)^2+\frac{2}{3}+\frac{4}{3}\le2\)

Dấu bằng xảy ra khi \(t=\frac{1}{3}\)<=> \(a=b=c=\frac{1}{3}\)