K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

Ta có : \(\frac{a}{2a-1}+\frac{b}{2b-1}=\frac{1}{\frac{2a-1}{a}}+\frac{1}{\frac{2b-1}{b}}\ge\frac{4}{4-\left(\frac{1}{a}+\frac{1}{b}\right)}\)

Do đó cần chứng minh \(\frac{4}{4-\left(\frac{1}{a}+\frac{1}{b}\right)}\ge\frac{4}{1+ab}\)

Điều này tương đương với \(4-\left(\frac{1}{a}+\frac{1}{b}\right)\le1+ab\Leftrightarrow\frac{1}{a}+\frac{1}{b}+ab-3\ge0\)

\(\Leftrightarrow\frac{a+b+a^2b^2-3ab}{ab}\ge0\Leftrightarrow\frac{\left(a^2b^2-2ab+1\right)+\left(a+b-ab-1\right)}{ab}\ge0\)

\(\Leftrightarrow\frac{\left(ab-1\right)^2+\left(a-1\right)\left(b-1\right)}{ab}\ge0\)

18 tháng 12 2018

Trời ! Sao trên đời này có nhiều đứa ngu quá vậy ?

18 tháng 12 2018

Trời ! Sao trên đời này có nhiều người chảnh quá vậy ?

NV
27 tháng 4 2020

\(\frac{1}{2a-1}+\frac{1}{1}\ge\frac{4}{2a}=\frac{2}{a}\) ; \(\frac{1}{2b-1}+\frac{1}{1}\ge\frac{2}{b}\) ; \(\frac{1}{2c-1}+\frac{1}{1}\ge\frac{2}{c}\)

\(\Rightarrow VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\Rightarrow VT\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

22 tháng 2 2019

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)thì bài toán thành

\(x+y+z=2\) chứng minh rằng

\(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)

Trước hết ta chứng minh:

Ta có: \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge\frac{3x}{4}\)

\(\Leftrightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)

\(\Rightarrow VP\ge\left(x+y+z\right)-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)

21 tháng 6 2020

Bài làm:

Ta xét: \(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4bc}}=2.\frac{1}{2a}=\frac{1}{a}\)

Tương tự ta chứng minh được: \(\frac{ca}{b^2\left(c+a\right)}\ge\frac{1}{b}\)và \(\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{c}\)

\(\Rightarrow VT+\frac{1}{4}\left(\frac{b+c}{bc}+\frac{c+a}{ca}+\frac{a+b}{ab}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow VT\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

Dấu "=" xảy ra khi: \(a=b=c\)

Dạ nếu em làm còn nhầm lẫn chỗ nào thì mong mn thông cảm ạ!

21 tháng 6 2020

Ở đoạn tương tự mình viết nhầm phải là: \(\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge\frac{1}{b}\)  và \(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge\frac{1}{c}\)nhé!

Học tốt!!!!

6 tháng 12 2020

Áp dụng bất đẳng thức cơ bản dạng\(\left(x+y\right)^2\ge4xy\), ta được: \(\left(a+2b\right)^2=\left(\frac{2a+b}{2}+\frac{3b}{2}\right)^2\ge4.\frac{2a+b}{2}.\frac{3b}{2}=3b\left(2a+b\right)\)

\(\Rightarrow\frac{2a+b}{a+2b}\le\frac{a+2b}{3b}\Rightarrow\frac{2a+b}{a\left(a+2b\right)}\le\frac{1}{3}\left(\frac{2}{a}+\frac{1}{b}\right)\)

Tương tự, ta có: \(\frac{2b+c}{b\left(b+2c\right)}\le\frac{1}{3}\left(\frac{2}{b}+\frac{1}{c}\right)\)\(\frac{2c+a}{c\left(c+2a\right)}\le\frac{1}{3}\left(\frac{2}{c}+\frac{1}{a}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(c+2a\right)}\)

Đẳng thức xảy ra khi a = b = c 

1 tháng 4 2017

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

1 tháng 4 2017

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

18 tháng 2 2020

Với x,y>0 ta cm: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

=>\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

ÁP dụng vào bài toán ta có: 

\(\frac{1}{a+b+2c}=\frac{1}{a+c+b+c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow\frac{4ab}{a+b+2c}\le\frac{ab}{a+c}+\frac{ab}{b+c}\)

tương tự: \(\frac{4bc}{b+c+2a}\le\frac{bc}{a+b}+\frac{bc}{a+c};\frac{4ca}{c+a+2b}\le\frac{ca}{b+c}+\frac{ca}{a+b}\)

Cộng 3 bđt trên vế theo vế ta dc \(4\left(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\right)\le\frac{bc+ca}{a+b}+\frac{ab+ca}{b+c}+\frac{ab+bc}{a+c}=c+a+b\)

=>đpcm

Dấu "=" xảy ra <=> a=b=c

22 tháng 2 2022

Áp dụng đánh giá \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) , ta được:

\(\left(\frac{a}{b+2c}\right)^2+\left(\frac{b}{c+2a}\right)^2+\left(\frac{c}{a+2b}\right)^2\ge\frac{1}{3}\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\)

Vậy ta cần chứng minh:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)

Vậy theo đánh giá ta được: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\), do đó ta được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)

Vậy bất đẳng thức ban đầu được chứng minh.