Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có:(x-y) chia hết cho 5
=>(x-y+5y) chia hết cho 5 (vì 5y chia hết cho 5)
=>[x+(-y+5y)] chia hết cho 5
=>x+4y chia hết cho 5
Vậy khẳng định B là đúng
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
7a4b chia hết cho 4 ---> 4b chia hết cho 4 ---> b bằng 0; 4 hoặc 8
..+ Nếu b = 0
...7735 chia hết cho 7 ---> 7740 chia 7 dư 5 ---> 7840 = 7740 + 100 chia hết cho 7 (vì 100 chia 7 dư 2)
---> 7140 = 7840 - 700 chia hết cho 7.Vậy b = 0 ---> a = 8 và a = 1
..+ Nếu b = 4
...7742 chia hết cho 7 ---> 7744 chia 7 dư 2 ---> 7644 = 7744 - 100 chia hết cho 7 (vì 100 chia 7 dư 2).Vậy b = 4 ---> a = 6
..+ Nếu b = 8
...7742 chia hết cho 7 ---> 7748 chia 7 dư 6 ---> 7448 = 7748 - 300 chia hết cho 7 (vì 300 chia 7 dư 6).Vậy b = 8 ---> a = 4
...Trả lời : Các đáp án là (a,b) bằng (1;0); (8;0); (6;4); (4;8)
b có 2 trường hợp:1 và 6.nếu là 1 thì ko được vì đề bài có yêu cầu chia hết cho 2.vậy b=6
ta có số: 7a46.
7+4+6=17.
số chia hết cho 3 là:18
số a là: 18-17=1.vậy a=1
ta có số hoàn chỉnh: 7146
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
ta có 4a+3b=a+3a+3b=a+(3a+3b)=a+[3*(a+b)]
ta có 3*(a+b) chia hết cho 5(vì a+b chia hết cho 5)
Mà a+b chia hết cho 5 nên a có thể chia hết cho 5 hoặc không chia hết cho5
Th1:a chia hết cho 5 thì a+[3*(a+b)]chia hết cho 5(vì 2 số cùng chia hết cho 5 thì tổng của chúng sẽ chia hết cho 5)
Th2:a không chia hết cho 5 thì a+[3*(a+b)]không chia hết cho 5(vì 2 số không chia hết cho 5 thì tổng của chúng sẽ không chia hết cho 5)
3a+b cũng tương tự như vậy thôi
3a+b=2a+a+b=2a+(a+b)
ta có (a+b) chia hết cho 5
Mà ƯCLN(2;5)=1 nên 2a có chia hết cho 5 hay không phụ thuộc vào a
ta cũng xét 2 trường hợp
Th1:a không chia hết cho 5 thì 3a+b không chia hết cho5
Th2:a chia hết cho 5 thì 3a+b chia hết cho 5
4a+3b ko chia hết cho 5
3a+b ko chia hết cho 5