K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

Nếu \(5a^2+15ab-b^2⋮49\)

\(\Rightarrow5a^2+15ab-b^2⋮7\left(1\right)\)

Mặt khác lại có:

\(\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2\)

\(=7a\cdot\left(2a+3b\right)⋮7\left(2\right)\)

Từ (1) và (2) suy ra:

\(\left(3a+b\right)^2⋮7\Rightarrow3a+b⋮7\)

Nếu \(3a+b⋮7\) ta có:

\(\left(3a+b\right)+2\cdot\left(2a+3b\right)=7\cdot\left(a+b\right)⋮7\)

\(\Rightarrow2\cdot\left(2a+3b\right)⋮7\Rightarrow2a+3b⋮7\)

\(\Rightarrow\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2\)

\(=7a\cdot\left(2a+3b\right)⋮49\left(3\right)\)

\(3a+b⋮7\) nên \(\left(3a+b\right)^2⋮49\left(4\right)\)

Từ (3) và (4) suy ra:

\(5a^2+15ab-b^2⋮49\)

\(\Leftrightarrow3a+b⋮7\)

18 tháng 3 2020

đầu bài đúng ko đó bn

mk thấy sao sao

bn xem lại hộ mk

16 tháng 12 2023

1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)

Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ

Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ

 a2+ b= 2234 không chia hết cho 5

Giả sử cả a2, b2 đều không chia hết cho 5

-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)

Mà a2+ b= 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai

Giả sử a=5 -> a2= 25

b2= 2209

b2= 472

-> b=47

                    Vậy hai số cần tìm là 5 và 47

 

4 tháng 8 2017

1/ Chứng minh nó chia hết cho 3:

Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.

\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.

\(\Rightarrow xy⋮3\)

Chứng minh chia hết cho 4.

Nếu cả x, y đều chẵn thì \(xy⋮4\)

Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ

\(\Rightarrow x=2k+1;y=2m;z=2n+1\)

\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m⋮2\)

\(\Rightarrow y⋮4\)

\(\Rightarrow xy⋮4\)

Với x, y đều lẻ nên z chẵn

\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)

\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này

Vậy \(xy⋮4\)

Từ chứng minh trên 

\(\Rightarrow xy⋮12\)

4 tháng 8 2017

2/ \(a+b=c+d\)

\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)

\(\Leftrightarrow2ab=2cd\)

\(\Leftrightarrow-2ab=-2cd\)

\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)

Kết hợp với \(a+b=c+d\)

\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)

\(\RightarrowĐPCM\)

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
5 tháng 12 2017

\(P=\frac{3\left(a+b\right)}{\sqrt{9a\left(4a+5b\right)}+\sqrt{9b\left(4b+5a\right)}}\)

\(\ge\frac{3\left(a+b\right)}{\frac{9a+4a+5b}{2}+\frac{9b+4b+5a}{2}}=\frac{1}{3}\)

5 tháng 12 2017

Ta có :

  \(P^1=\frac{a+b}{\sqrt{a\left(4a+5b\right)}+\sqrt{b\left(4b+5a\right)}}.\)

\(\Leftrightarrow P^2=\frac{3\left(a+b\right)}{\sqrt{9a\left(4a+5b\right)}+\sqrt{9b\left(4b+5a\right)}}\)

Mà ta thấy  biểu thức \(P^2\ge\frac{3\left(a+b\right)}{\frac{9a+4a+5b}{2}+\frac{9b+4b+5a}{2}}\)

                                     \(=\frac{1}{3}\)

Vậy giá trị nhỏ nhất của biểu thức \(P=\frac{1}{3}\)

     \(\)