K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

(a+b).(1/a+1/b) >= 4

<=>(a+b).[(a+b)/ab] >= 4

<=>(a+b)2/ab >= 4

<=>(a+b)2 >= 4ab

<=>(a+b)2-4ab >= 0

<=>a2+2ab-4ab+b2 >= 0

<=>a2-2ab+b2 >= 0

<=>(a-b)2 >= 0( luôn đúng với mọi a,b)

Dấu "=" xảy ra<=>a=b

 

 

8 tháng 4 2016

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)>=4\)

\(<=>\left(a+b\right).\left(\frac{a+b}{ab}\right)>=4\)

\(<=>\frac{\left(a+b\right)^2}{ab}>=4\)

\(<=>\left(a+b\right)^2>=4ab\)

\(<=>\left(a+b\right)^2-4ab>=0\)

\(<=>a^2+2ab+b^2-4ab>=0\)

\(<=>a^2-2b+b^2>=0\)

\(<=>\left(a-b\right)^2>=0\) (dấu "=" xảy ra<=>a=b)

BĐT cuối luôn đúng,ta có điều phải chứng minh

14 tháng 6 2019

11/Theo BĐT AM-GM,ta có; \(ab.\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)\(=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự với hai BĐT kia,cộng theo vế và rút gọn ta được đpcm.

Dấu "=" xảy ra khi a= b=c

14 tháng 6 2019

Ơ vãi,em đánh thiếu abc dưới mẫu,cô xóa giùm em bài kia ạ!

9/ \(VT=\frac{\Sigma\left(a+2\right)\left(b+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+8+abc+\left(ab+bc+ca\right)}\)

\(\le\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+9+3\sqrt[3]{\left(abc\right)^2}}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{ab+bc+ca+4\left(a+b+c\right)+12}=1\left(Q.E.D\right)\)

"=" <=> a = b = c = 1.

Mong là lần này không đánh thiếu (nãy tại cái tội đánh ẩu)

29 tháng 5 2018

Chọn C

4 tháng 4 2018

Đổi về cơ số a có

log a b a b = log a a b log a a b = 1 2 1 + log a b 1 - log a b = 1 2 ( 1 + 2 ) 1 - 2 = - 3 2

Chọn đáp án A.

20 tháng 9 2015

hoc24.net giúp em với

5 tháng 1 2019

11 tháng 2 2018

Đáp án A

4 tháng 2 2016

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

19 tháng 4 2018

Xét \(( a^2 + b^2 + c^2 + d^2 ) - ( a + b + c + d)\)

\(= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)\)

Vì a là số nguyên dương nên $a$, $(a – 1)$ là hai số tự nhiên liên tiếp

\(\Rightarrow a-1⋮2\)

Tương tự ta có $b(b-1)$; $c(c-1)$; $d(d-1)$ đều chia hết cho 2

=> $a(a -1) + b( b -1) + c( c – 1) + d( d – 1)$ là số chẵn

Lại có \(a^2 + c^2 = b^2 + d^2=> a^2 + b^2 + c^2 + d^2 = 2( b^2 + d^2)\) là số chẵn.

Do đó $a + b + c + d$ là số chẵn mà $a + b + c + d > 2$ (Do \(a,b,c,d\in N^{sao}\))

\(\Rightarrow\) $a + b + c + d$ là hợp số.

6 tháng 5 2019

24 tháng 1 2016

bài 1

\(A+B=a+b-5-b-c+1=a-c-4\)

 

\(A+B+C+D=a-c-4+b-c-4+b-a=2b-2c\)

 

\(A-B+C-D=a+b-5+b+c-1+b-c-4+a-b\)

\(A-B+C-D=2a+2b-10\)

 

\(A+B=a-c-4\)

\(C-D=b-c-4-b+a=a-c-4\)

\(A+B=C-D\)

24 tháng 1 2016

Bài 2

\(M>N\)

\(M-N>0\)

\(a+b-1+b+c-1=a+c-2>0\)

\(a+c>2\)