K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

\(VT=a^2+2b^2+2ab-4b+4=\left(a^2+2ab+b^2\right)+\left(b^2-4b+4\right)=\left(a+b^2\right)+\left(b-2\right)^2\)

Mà VT=0 nên \(\left\{{}\begin{matrix}b=2\\a=-b=-2\end{matrix}\right.\)

Thay vào M đc \(\frac{a^2-7ab+52}{a-b}=\frac{4+28+52}{-4}=-21\)

20 tháng 3 2019

\(pt\Leftrightarrow\left(a+b\right)^2+\left(b-2\right)^2=0\)

\(\Leftrightarrow a=-2;b=2\)

Giải tiếp nhé

20 tháng 3 2019

cảm ơn bạn

4 tháng 11 2022

Ta có : a2 + 2ab + b2 + b2 - 4b +4 = 0
<=> ( a + b )2 + ( b - 2 )2 = 0  

mà: ( a + b )2≥0 ∀a,b

       ( b - 2 )2 ≥0 ∀​b

Dấu "=" xảy ra khi :

a + b =0  
b - 2 =0
<=> a + 2 =0 <=> a = -2
       b =2

Thay a = -2 ; b =2 vào ta có:

M= 22 +7.2.2 + \(\dfrac{52}{-2-2}\) 

M= 4 +28- \(\dfrac{52}{4}\) 
M= 4 +28 - 13 = 19

14 tháng 5 2017

1, hiển nhiên a+b>0 

có a^2+2ab+2b^2-2b=8=>(a+b)^2=8-(b^2-2b)=9-(b-1)^2 </ 9 => a+b </ 3 

21 tháng 12 2016

1/ \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x^2-y^2\right)-4y^2+10\)

\(=x^2-2xy+y^2+x^2+2xy+y^2-2x^2+2y^2-4y^2+10\)

\(=10\)

2/ \(5a^2+b^2=6ab\Leftrightarrow\left(5a^2-5ab\right)+\left(b^2-ab\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(5a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\5a=b\end{cases}}\)

Với a = b thì

\(M=\frac{a-b}{a+b}=\frac{a-a}{a+a}=0\)

Với 5a = b thì

\(M=\frac{a-b}{a+b}=\frac{a-5a}{a+5a}=\frac{-4}{6}=\frac{-2}{3}\)

21 tháng 12 2016

1.(x-y)2+(x+y)2-2(x2-y2)-4y2+10

=x2-2xy+y2+x2+2xy+y2-2x2+2y2-4y2+10

=x2+x-2x2-2xy+2xy+y2+y2+2y2-4y2+10

=10

=>dpcm

2.Ta co : 5a2+b2=6ab

5a2+b2-6ab=0

5a2+b2-5ab-ab=0

5a2-5ab+b2-ab=0

5a(a-b)+b(b-a)=0

5a(a-b)-b(a-b)=0

(a-b)(5a-b)=0

Ta lai co : a-b=0 \(\Rightarrow\)a=b

Va : 5a-b=0 \(\Rightarrow\)5a=b

Thay : a=b vao M

\(\Rightarrow M=\frac{a-b}{a+b}=\frac{b-b}{b+b}=\frac{0}{2b}=0\)

Thay : 5a=b vao M

\(\Rightarrow M=\frac{a-b}{a+b}=\frac{a-5a}{a+5a}=-\frac{4a}{6a}=-\frac{4}{6}=-\frac{2}{3}\)

31 tháng 12 2018

Nhóm vào , ta có : 

\(\left(a+1\right)^3+\left(b+1\right)^3+a+b+1+1=0\)

Đến đây áp dụng HĐT là ra 

31 tháng 12 2018

Chán nhỉ ? 

Tách ra nhóm vào thì được thế ? 

27 tháng 11 2019

a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:

(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

4 tháng 6 2020

ai làm giúp em phép tính này với em làm mãi ko dc ạ 

bài 5 tính nhanh

a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2 

b 100 -5 -5 -...-5 ( có 20 chữ số 5 )

c 99- 9 -9 - ... -9 ( có 11 chữ số 9 ) 

d 2011 + 2011 + 2011 + 2011 -2008 x 4

i 14968+ 9035-968-35

k 72 x 55 + 216 x 15 

l 2010 x 125 + 1010 / 126 x 2010 -1010

e 1946 x 131 + 1000 / 132 x 1946 -946

g 45 x 16 -17 / 45 x 15 + 28 

h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1

15 tháng 3 2018

vì a,b,c là 3 số thực khác nhau và khác 0 nên a-b, b-c, a-c khác 0. Do đó:

a2- b= b2- c <=> a2 -b2 =b -c <=>(a-b)(a+b)=b-c => a+b =(b-c)/(a-b)

cmtt ta có b+c=(c-a)/(b-c) ; c+a = (a-b)/(c-a). Như vậy ta tính được P=1