K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

\(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{\left(a^2+b^2\right)\left(1+a+1+b\right)}\)

\(=\sqrt{2+a+b}\le\sqrt{2+\sqrt{2\left(a^2+b^2\right)}}=\sqrt{2+\sqrt{2}}\)

Dấu = xảy ra khi \(a=b=\dfrac{1}{\sqrt{2}}\)

6 tháng 4 2017

\(\left(a\sqrt{b+1}+b\sqrt{a+1}\right)^2\le\left(a^2+b^2\right)\left(a+b+2\right)=a+b+2\le\sqrt{2\left(a^2+b^2\right)}+2=2+\sqrt{2}\)

\(\Rightarrow a\sqrt{b+1}+b\sqrt{a+1}\le\sqrt{2+\sqrt{2}}\)

7 tháng 4 2017

em cảm ơn haha

7 tháng 8 2015

\(VP^2=\frac{a+\sqrt{a^2-b}}{2}+\frac{a-\sqrt{a^2-b}}{2}+2\sqrt{\frac{\left(a+\sqrt{a^2-b}\right)\left(a-\sqrt{a^2-b}\right)}{2.2}}\)

\(=a+\sqrt{a^2-\left(a^2-b\right)}=a+\sqrt{b}=VT^2\)

7 tháng 8 2015

\(VP^2=\frac{a+\sqrt{a^2-b}}{2}+\frac{a-\sqrt{a^2-b}}{2}+2\sqrt{\frac{\left(a+\sqrt{a^2-b}\right)\left(a-\sqrt{a^2-b}\right)}{2.2}}\)

\(=a+\sqrt{a^2-\left(a^2-b\right)}=a+\sqrt{b}=VP^2\)

7 tháng 8 2015

ờm, chắc các bn chưa bt trieu dang hơi keo nhỉ 

25 tháng 4 2019

Áp dụng bđt bunhiacopski cho 3 số ta có

\(\left(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}\right)^2\le\left(a^2+b^2+c^2\right)\left(1-a^2+1-b^2+1-c^2\right)\Leftrightarrow\frac{9}{4}\le\left(a^2+b^2+c^2\right)\left[3-\left(a^2+b^2+c^2\right)\right]\)(1)

Đặt \(a^2+b^2+c^2=k\)

Vậy (1)\(\Leftrightarrow\frac{9}{4}\le k\left(3-k\right)\Leftrightarrow\frac{9}{4}\le3k-k^2\Leftrightarrow k^2-3k+\frac{9}{4}\le0\Leftrightarrow\left(k-\frac{3}{2}\right)^2\le0\)

\(\left(k-\frac{3}{2}\right)^2\ge0\)

Suy ra \(\left(k-\frac{3}{2}\right)^2=0\Leftrightarrow k-\frac{3}{2}=0\Leftrightarrow k=\frac{3}{2}\)

Vậy \(a^2+b^2+c^2=\frac{3}{2}\)

27 tháng 10 2015

Áp dụng BĐT cô -si  \(\left(ab\le\frac{\left(a+b\right)^2}{4}\right)\) ta có :

\(\frac{1}{2}\cdot2\sqrt{ab}\left(a+b\right)\le\frac{1}{2}\cdot\frac{\left(a+b+2\sqrt{ab}\right)^2}{4}=\frac{1}{2}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\frac{1}{8}\)

<=> \(\sqrt{ab}\left(a+b\right)\le\frac{1}{8}\)

<=> \(ab\left(a+b\right)^2\le\frac{1}{64}\)

Dấu '' = '' xảy ra khi a = b = \(\frac{1}{4}\)

27 tháng 10 2015

BPT <=> \(\sqrt{ab}\left(a+b\right)\le\frac{1}{8}\)

\(\frac{1}{2}\cdot2\sqrt{ab}\left(a+b\right)\le\frac{1}{2}\cdot\frac{\left(a+2\sqrt{ab}+b\right)^2}{4}=\frac{1}{2}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\frac{1}{2}\cdot\frac{1}{4}=\frac{1}{8}\)

 

14 tháng 7 2020

1/ .............. a=<b=<c=<d và a+d=b+c