\(a^3+b^3=3ab-1\)

CMR:\(a^{2018}+b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

Câu hỏi của Trung Nguyễn Thành - Toán lớp 8 - Học toán với OnlineMath tham khảo

3 tháng 11 2018

Sửa đề cm a2018+b2018=2

Ta có:\(a^3+b^3=3ab-1\)

\(\Leftrightarrow a^3+b^3+1-3ab=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+1-3ab=0\)

\(\Leftrightarrow\left(a+b+1\right)\left[\left(a+b\right)^2-\left(a+b\right)+1\right]-3ab\left(a+b+1\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+ab+b^2-a-b+1\right)=0\)

Vì a,b > 0 => a + b + 1 > 0

=>\(a^2+ab+b^2-a-b+1=0\)

=>2a2+2ab+2b2-2a-2b+2=0

=>(a2+2ab+b2)+(a2-2a+1)+(b2-2b+1)=0

=>(a+b)2+(a-1)2+(b-1)2=0

Mà \(\hept{\begin{cases}\left(a+b\right)^2\ge0\\\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\end{cases}}\Rightarrow VT\ge0\)

=>\(\hept{\begin{cases}a+b=0\\a-1=0\\b-1=0\end{cases}}\)=> a=b=1

=>\(a^{2018}+b^{2018}=1+1=2\)

1 tháng 8 2018

TÔI CHƯA GIẢI ĐƯỢC

12 tháng 10 2019

với a, b >0

\(a^9+b^9=a^{10}+b^{10}< =>a^9\left(a-1\right)+b^9\left(b-1\right)=0\)

\(a^{10}+b^{10}=a^{11}+b^{11}< =>a^{10}\left(a-1\right)+b^{10}\left(b-1\right)=0\)

trừ vế theo vế ta được (a-1)(a10-a9) + (b-1)(b10-b9) = 0 <=> [b3(b-1)]2 + [b3(b-1)]2 =0

<=> \(\hept{\begin{cases}a^3\left(a-1\right)=0\\b^3\left(b-1\right)=0\end{cases}< =>\hept{\begin{cases}a-1=0\\b-1=0\end{cases}< =>}}\)a = b =1 

vậy P= 2020

8 tháng 4 2019

Ta có : \(a^3-3ab^2=5\Rightarrow\left(a^3-3ab^2\right)^2\)\(=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)

            \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\)\(\Rightarrow b^6-6a^2b^4+9a^4b^2=100\)

Cộng hai vế ta được : 

\(a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)

\(\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)

\(\Rightarrow\left(a^2+b^2\right)^3=125\)

\(\Rightarrow\left(a^2+b^2\right)^3=5^3\)

\(\Rightarrow a^2+b^2=5\)

\(\Rightarrow\frac{a^2+b^2}{2018}=\frac{5}{2018}\)

Chúc bạn học tốt ^^

1 tháng 5 2020

what đè he