Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=\text{a}-\frac{a^2}{a+1}+b-\frac{b^2}{b+1}+c-\frac{c^2}{c+1}\)
\(=1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\)
Áp dụng BĐT Cauchy dạng phân thức :
\(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{1}{1+3}=\frac{1}{4}\)
\(\Rightarrow1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\le1-\frac{1}{4}=\frac{3}{4}\)
\(\Rightarrow GTLN=\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=a-\frac{a^2}{a+1}+b-\frac{b^2}{b+1}+c-\frac{c^2}{c+1}\)
\(=1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{1}{1+3}=\frac{1}{4}\)
\(\Rightarrow1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\le1-\frac{1}{4}=\frac{3}{4}\)
\(\Rightarrow GTLN=\frac{3}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
Đơn giản là Cauchy-Schwarz
\(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)\left(1+1+1\right)\)
\(=3\cdot\left(2a+2b+2c\right)=6\left(a+b+c\right)=1\)
\(\Rightarrow S^2\le6\Rightarrow S\le\sqrt{6}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
ta dự đoán điểm khi : \(a=b=c=\frac{1}{3}\)
\(\Rightarrow\sqrt{a+b}=\sqrt{b+c}=\sqrt{a+c}=\sqrt{\frac{2}{3}}\)
Khi đó ta có :
\(\sqrt{\frac{2}{3}}.\sqrt{a+b}\le\frac{\frac{2}{3}+a+b}{2}\)
\(\sqrt{\frac{2}{3}}.\sqrt{b+c}\le\frac{\frac{2}{3}+b+c}{2}\)
\(\sqrt{\frac{2}{3}}.\sqrt{c+a}\le\frac{\frac{2}{3}+a+c}{2}\)
cộng từng vế 3 bất phương trình ta có
\(\sqrt{\frac{2}{3}}.S\le\frac{1}{2}\left(\frac{2}{3}+2\left(a+b+c\right)\right)=2\) \(\Leftrightarrow S\le2.\sqrt{\frac{3}{2}}=\sqrt{6}\)
Vậy \(S_{max}=\sqrt{6}\)dấu "=" khi \(a=b=c=\frac{1}{3}\)
a.b.c=1 mà a,b,c >0 suy ra a=b=c=1
vậy GTLN của a+b+c=1+1+1=3