Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả thiết ngứa mắt vc , let's biến đổi chút
\(GT\Leftrightarrow\frac{1-a}{a}.\frac{1-b}{b}.\frac{1-c}{c}=1\). Đặt \(\left(\frac{1-a}{a};\frac{1-b}{b};\frac{1-c}{c}\right)\rightarrow\left(x;y;z\right)\)
thì \(a=\frac{1}{x+1};b=\frac{1}{y+1};c=\frac{1}{z+1}\)
nên bài toán đã cho trở thành \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}\left(xyz=1\right)\)
để ý rằng \(VT\ge\frac{1}{2\left(x^2+1\right)}+\frac{1}{2\left(y^2+1\right)}+\frac{1}{2\left(z^2+1\right)}\)
nên chỉ cần chứng minh \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge\frac{3}{2}\left(xyz=1\right)\)
cho 3 số dương a,b,c thỏa mãn abc = 1 và a+b+c > 1/a + 1/b + 1/. chứng minh rằng (a-1)(b-1)(c-1) > 0
bạn xem bài này tại đây:
http://d.violet.vn/uploads/resources/615/2779702/preview.swf
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)
\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2)
Từ (1) và (2)
\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Mình viết lại đề cho dễ nhìn:
Cho a;b;c>0 thỏa mãn \(a^2+b^2+c^2=\frac{5}{3}\)
Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{1}{abc}\)
Vì abc=1 nên có: \(a^3+b^3+c^3+3=\frac{a^3+b^3+c^3}{abc}+3=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)
\(\ge\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\)(1)
Đặt: \(\frac{a}{b+c}=X;\frac{b}{c+a}=Y;\frac{c}{a+b}=Z\)
Ta có: \(4X^2+4Y^2+4Z^2+3-4X-4Y-4Z=\left(2X-1\right)^2+\left(2Y-1\right)^2+\left(2Z-1\right)^2\ge0\)
=> \(4Z^2+4Y^2+4Z^2+3\ge4X+4Y+4Z=4\left(X+Y+Z\right)\)
=> \(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
=> \(a^3+b^3+c^3+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
"=" xảy ra <=> a =b =c =1.\(\)
Lời giải:
\(abc=(1-a)(1-b)(1-c)\Rightarrow \frac{1-a}{a}.\frac{1-b}{b}.\frac{1-c}{c}=1\)
Đặt \(\left(\frac{1-a}{a};\frac{1-b}{b}; \frac{1-c}{c}\right)=(x,y,z)\Rightarrow (a,b,c)=\left(\frac{1}{x+1}; \frac{1}{y+1}; \frac{1}{z+1}\right)\)
Bài toán trở thành
Cho $x,y,z>0$ thỏa mãn $xyz=1$. CMR:
\(A=\frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2}\geq \frac{3}{4}\)
------------------------
Thật vậy:
Áp dụng BĐT Bunhiacopxky:
\((x+1)^2\leq (x+\frac{1}{y})(x+y)\Rightarrow \frac{1}{(x+1)^2}\geq \frac{y}{(xy+1)(x+y)}\)
\((y+1)^2\leq (y+\frac{1}{x})(y+x)\Rightarrow \frac{1}{(y+1)^2}\geq \frac{x}{(xy+1)(x+y)}\)
\(\Rightarrow A\geq \frac{y}{(xy+1)(x+y)}+\frac{x}{(xy+1)(x+y)}+\frac{1}{(z+1)^2}\)
\(A\geq \frac{x+y}{(xy+1)(x+y)}+\frac{1}{(z+1)^2}=\frac{1}{xy+1}+\frac{1}{(z+1)^2}\)
\(A\geq \frac{1}{\frac{1}{z}+1}+\frac{1}{(z+1)^2}=\frac{z^2+z+1}{(z+1)^2}(*)\)
Mà \(\frac{z^2+z+1}{(z+1)^2}-\frac{3}{4}=\frac{(z-1)^2}{4(z+1)^2}\geq 0\Rightarrow \frac{z^2+z+1}{(z+1)^2}\geq \frac{3}{4}(**)\)
Từ \((*); (**)\Rightarrow A\geq \frac{3}{4}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c=\frac{1}{2}\)