K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Giả thiết ngứa mắt vc , let's biến đổi chút 

\(GT\Leftrightarrow\frac{1-a}{a}.\frac{1-b}{b}.\frac{1-c}{c}=1\). Đặt \(\left(\frac{1-a}{a};\frac{1-b}{b};\frac{1-c}{c}\right)\rightarrow\left(x;y;z\right)\)

thì \(a=\frac{1}{x+1};b=\frac{1}{y+1};c=\frac{1}{z+1}\)

nên bài toán đã cho trở thành \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}\left(xyz=1\right)\)

để ý rằng \(VT\ge\frac{1}{2\left(x^2+1\right)}+\frac{1}{2\left(y^2+1\right)}+\frac{1}{2\left(z^2+1\right)}\)

nên chỉ cần chứng minh \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge\frac{3}{2}\left(xyz=1\right)\)

29 tháng 10 2017

bất đẳng thức dưới cùng chứng minh như thế nào bn

30 tháng 4 2015

bạn xem bài này tại đây: 

http://d.violet.vn/uploads/resources/615/2779702/preview.swf

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

23 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)

\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1) 

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2) 

Từ (1) và (2) 

\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

14 tháng 11 2017

Mình viết lại đề cho dễ nhìn: 

Cho a;b;c>0 thỏa mãn \(a^2+b^2+c^2=\frac{5}{3}\)

Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{1}{abc}\)

22 tháng 10 2019

Vì abc=1 nên có: \(a^3+b^3+c^3+3=\frac{a^3+b^3+c^3}{abc}+3=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)

\(\ge\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\)(1)

Đặt: \(\frac{a}{b+c}=X;\frac{b}{c+a}=Y;\frac{c}{a+b}=Z\)

Ta có: \(4X^2+4Y^2+4Z^2+3-4X-4Y-4Z=\left(2X-1\right)^2+\left(2Y-1\right)^2+\left(2Z-1\right)^2\ge0\)

=> \(4Z^2+4Y^2+4Z^2+3\ge4X+4Y+4Z=4\left(X+Y+Z\right)\)

=> \(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

=> \(a^3+b^3+c^3+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

"=" xảy ra <=> a =b =c =1.\(\)

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

\(abc=(1-a)(1-b)(1-c)\Rightarrow \frac{1-a}{a}.\frac{1-b}{b}.\frac{1-c}{c}=1\)

Đặt \(\left(\frac{1-a}{a};\frac{1-b}{b}; \frac{1-c}{c}\right)=(x,y,z)\Rightarrow (a,b,c)=\left(\frac{1}{x+1}; \frac{1}{y+1}; \frac{1}{z+1}\right)\)

Bài toán trở thành

Cho $x,y,z>0$ thỏa mãn $xyz=1$. CMR:

\(A=\frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2}\geq \frac{3}{4}\)

------------------------

Thật vậy:

Áp dụng BĐT Bunhiacopxky:

\((x+1)^2\leq (x+\frac{1}{y})(x+y)\Rightarrow \frac{1}{(x+1)^2}\geq \frac{y}{(xy+1)(x+y)}\)

\((y+1)^2\leq (y+\frac{1}{x})(y+x)\Rightarrow \frac{1}{(y+1)^2}\geq \frac{x}{(xy+1)(x+y)}\)

\(\Rightarrow A\geq \frac{y}{(xy+1)(x+y)}+\frac{x}{(xy+1)(x+y)}+\frac{1}{(z+1)^2}\)

\(A\geq \frac{x+y}{(xy+1)(x+y)}+\frac{1}{(z+1)^2}=\frac{1}{xy+1}+\frac{1}{(z+1)^2}\)

\(A\geq \frac{1}{\frac{1}{z}+1}+\frac{1}{(z+1)^2}=\frac{z^2+z+1}{(z+1)^2}(*)\)

\(\frac{z^2+z+1}{(z+1)^2}-\frac{3}{4}=\frac{(z-1)^2}{4(z+1)^2}\geq 0\Rightarrow \frac{z^2+z+1}{(z+1)^2}\geq \frac{3}{4}(**)\)

Từ \((*); (**)\Rightarrow A\geq \frac{3}{4}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c=\frac{1}{2}\)