K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

Ta có:

\(\frac{a^2}{b^2}+1\ge2.\frac{a}{b}\)

\(\frac{b^2}{c^2}+1\ge2.\frac{b}{c}\)

\(\frac{c^2}{a^2}+1\ge2.\frac{c}{a}\)

Cộng vế theo vế ta được

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-3\)

\(\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\sqrt{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-3=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Dấu =  xảy ra khi a = b = c

19 tháng 2 2017

Ta co: \(\frac{a^2}{b^2}\ge\frac{a}{b}\)\(\frac{b^2}{c^2}\ge\frac{b}{c}\);\(\frac{c^2}{a^2}\ge\frac{c}{a}\)\(\Rightarrow dpcm\)

NV
3 tháng 3 2020

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}=2\left|\frac{a}{c}\right|\ge\frac{2a}{c}\)

Tương tự: \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)

Cộng vế với vế:

\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

3 tháng 3 2020

Cảm ơn bạn.

NM
7 tháng 2 2021

bài 1. ta có

\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)

\(\Leftrightarrow b^2+ab+\frac{a^2}{4}+c^2+ac+\frac{a^2}{4}+d^2+ad+\frac{a^2}{4}+\frac{a^2}{4}\ge0\)

\(\Leftrightarrow\left(b+\frac{a}{2}\right)^2+\left(c+\frac{a}{2}\right)^2+\left(d+\frac{a}{2}\right)^2+\frac{a^2}{4}\ge0\) luôn đúng

Bài 2

ta có \(\frac{a^5}{b^5}+1+1+1+1\ge\frac{5.a}{b}\) (bất đẳng thức cauchy)

Tương tự ta có \(\frac{b^5}{c^5}+4\ge\frac{5b}{c};\frac{c^5}{a^5}+4\ge\frac{5c}{a}\)

\(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\)

Mà dễ dàng chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

Nên ta có \(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

7 tháng 2 2021

bài 1 : \(^{a^2+B^2+C^2+D^2}\)>hoặc =ab+ac+ad 

\(^{a^2+b^2+c^2}\)- ab-ac-ad>hoặc = 0

\((\frac{1}{4}^{a^2-ab+b^2})+(\frac{1}{4}^{a^2-ac+c^2})+(\frac{1}{4}^{a^2-ad+d^2})\)>hoặc =0

\((\frac{1}{2}a-b)^2+(\frac{1}{2}a-c)^2+(\frac{1}{2}a-d)^2>=0\)

Vì \((\frac{1}{2}a-b)^2>=0\)với mọi \(A,b\varepsilon n\)

=> đpcm tự kết luận

9 tháng 2 2019

"Chấm" nhẹ hóng cao nhân ạ :)

P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)

9 tháng 2 2019

Câu 3: Tham khảo đây nhá: Câu hỏi của Trương Thanh Nhân, t làm r,giờ lười đánh lại.

9 tháng 11 2017

tau lam theo cach nay hoi dai nhung van dung

xet:a2/b2+c2-a/b+c=ab(a-b)+ac(a-c)/(b2+c2)(b+c)(1)

tg tu:b2/c2+a2-b/c+a=bc(b-c)+ab(b-a)/(a2+c2)(c+a)(2)

           c2/a2+b2-c/a+b=ac(c-a)+cb(c-b)(3)

lay(1)+(2)+(3) roi dat thua so chung ab(a-b);ac(c-a);bc(b-c) ra roi gia su a=>b=>c>0 suy ra bieu thuc trong ngoac ko am =>dpcm

21 tháng 4 2018

\(\frac{a}{b^2}+\frac{1}{a}\ge\frac{2}{b}\) BĐT Cô-si

Tương tự suy ra đpcm

13 tháng 3 2018

Áp dụng bất đẳng thức Cauchy-Schwarz: \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

13 tháng 3 2018

áp dụng bất đẳng thức Cauchy-Schwarz: \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

6 tháng 8 2019

Áp dụng bất đẳng thức Cô-si :

\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\)

Chứng minh tương tự : \(\frac{b^2}{c}+c\ge2b\); \(\frac{c^2}{a}+a\ge2c\)

Cộng theo vế của 3 bđt trên ta được :

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

22 tháng 5 2018

\(\frac{a}{a^2+ab+b^2}+\frac{b}{b^2+bc+c^2}+\frac{c}{c^2+ac+a^2}\)

\(=\frac{a^2}{a^3+a^2b+b^2a}+\frac{b^2}{b^3+b^2c+c^2b}+\frac{c^2}{c^3+c^2a+a^2c}\)

\(\ge\frac{\left(a+b+c\right)^2}{a^3+a^2b+b^2a+b^3+b^2c+c^2b+c^3+c^2a+a^2c}\)

\(=\frac{\left(a+b+c\right)^2}{a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a+b+c}{a^2+b^2+c^2}\)

Dấu "=" xảy ra khi : \(a=b=c\)