K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 8 2017

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left (\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)(abc+abc+abc)\geq (ab+bc+ac)^2\)

\(\Leftrightarrow \frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\geq \frac{(ab+bc+ac)^2}{3abc}\) $(1)$

Áp dụng BĐT Cauchy:

\(\left\{\begin{matrix} a^2b^2+b^2c^2\geq 2ab^2c\\ a^2b^2+c^2a^2\geq 2a^2bc\\ b^2c^2+c^2a^2\geq 2abc^2\end{matrix}\right.\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)

\(\Leftrightarrow (ab+bc+ac)^2\geq 3abc(a+b+c)(2)\)

Từ \((1),(2)\Rightarrow \frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\geq a+b+c\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

b) Ta có:

\(\text{VT}+3=(a+b+c)\left (\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Áp dụng BĐT Bunhiacopxky:

\(\left ( \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \right )(a+b+b+c+c+a)\geq (1+1+1)^2=9\)

\(\Rightarrow \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{9}{2(a+b+c)}\)

\(\Rightarrow \text{VT}+3\geq (a+b+c).\frac{9}{2(a+b+c)}=\frac{9}{2}\Rightarrow \text{VT}\geq \frac{3}{2}\)

Do đó ta có đpcm.

AH
Akai Haruma
Giáo viên
14 tháng 8 2017

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left (\frac{1}{a}+\frac{1}{b}\right)(a+b)\geq (1+1)^2\Rightarrow \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\) (đpcm)

Áp dụng công thức trên (cho tất cả các phần)

a) \(\left\{\begin{matrix} \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\\ \frac{1}{b}+\frac{1}{c}\geq \frac{4}{b+c}\\ \frac{1}{c}+\frac{1}{a}\geq \frac{4}{a+c}\end{matrix}\right.\) \(\Rightarrow \) cộng theo về, rút gọn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Ta có đpcm.

b) Áp dụng CT: \(\left\{\begin{matrix} \frac{1}{a+b}+\frac{1}{a+c}\geq \frac{4}{a+b+a+c}=\frac{4}{2a+b+c}\\ \frac{1}{b+c}+\frac{1}{a+c}\geq \frac{4}{a+b+2c}\\ \frac{1}{a+b}+\frac{1}{b+c}\geq \frac{4}{a+2b+c}\end{matrix}\right.\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq 2\left (\frac{1}{a+2b+c}+\frac{1}{2a+b+c}+\frac{1}{a+b+2c}\right)\)

Ta có đpcm.

c) Áp dụng hai phần a và b:

\(\text{VP}\leq \frac{1}{2}\left (\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\leq \frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow \text{VP}\leq \frac{4}{4}=1\) (đpcm)

Dấu bằng xảy ra ở tất cả các phần đều là khi \(a=b=c\)

29 tháng 12 2016

Bài 1a)

Áp dụng bất đẳng thức Cô-si cho từng cặp ta có

\(\left\{\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ac}\end{matrix}\right.\)

\(=>\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)

\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{\left(abc\right)^2}\)

\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\) ( điều phải chứng minh )

Bài 1b)

Áp dụng bất đẳng thức Cô-si bộ 3 số cho từng cặp ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\left(abc\right)^2}\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9\sqrt[3]{\left(abc\right)^3}\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\) (điều phải chứng minh )

Bài 1c) Ta có

\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

\(=>1+a+b\left(1+a\right)\left(1+c\right)\ge1^3+3.1^2.\sqrt[3]{abc}+3.1.\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{\left(abc\right)^3}\)

\(=>\left(1+a+b+ab\right)\left(1+c\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>1+a+b+ab+c\left(1+a+b+ab\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>1+a+b+ab+c+ca+bc+abc\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>a+b+c+ab+bc+ca\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\)

Áp dụng bất đẳng thức Cô-si bộ 3 số cho vế trái ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\ab+bc+ac\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)

\(=>a+b+c+ab+bc+ac\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\) (điều phải chứng minh )

29 tháng 12 2016

Bài 2a)

Áp dụng bất đẳng thức Cô-si cho từng cặp ta có

\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2\sqrt{c^2}=2c\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}.\frac{ab}{c}}=2\sqrt{a^2}=2a\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2\sqrt{b^2}=2b\end{matrix}\right.\)

\(=>2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(=>\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\) (điều phải chứng minh )

Bài 2b)

Chứng minh BĐT \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Áp dụng BĐT Cô-si cho vế trái ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều phải chứng minh )

Ta có \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(=>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\ge\frac{3}{2}+3\)

\(=>\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\ge\frac{9}{2}\)

\(=>\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)

\(=>\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)

\(=>2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\)

Áp dụng BĐT vừa chứng minh \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(=>\left(b+c+a+c+a+b\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9 \) (Điều phải chứng minh )

AH
Akai Haruma
Giáo viên
14 tháng 8 2017

Lời giải:

a) Áp dụng BĐT Bunhiacopxky:

\(\text{VT}=(\sqrt{a^3}^2+\sqrt{b^3}^2+\sqrt{c^3}^2)\left (\sqrt{\frac{1}{a}}^2+\sqrt{\frac{1}{b}}^2+\sqrt{\frac{1}{c}}^2\right)\geq (\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2})^2\)

\(\Leftrightarrow \text{VT}\geq (a+b+c)^2\) (đpcm)

b)

Khai triển ta có:

\(3(a^3+b^3+c^3)\geq (a^2+b^2+c^2)(a+b+c)\)

\(\Leftrightarrow 2(a^3+b^3+c^3)\geq ab(a+b)+bc(b+c)+ac(a+c)\)

Áp dụng BĐT Cauchy:

\(a^3+a^3+b^3\geq 3\sqrt[3]{a^6b^3}=3a^2b\)

\(b^3+b^3+c^3\geq 3\sqrt[3]{b^6c3}=3b^2c\)

\(c^3+c^3+a^3\geq 3\sqrt[3]{c^6a^3}=3c^2a\)

Cộng theo vế và rút gọn:

\(\Rightarrow a^3+b^3+c^3\geq a^2b+b^2c+c^2a\)

Hoàn toàn tương tự, ta cũng cm được: \(a^3+b^3+c^3+ab^2+bc^2+ca^2\)

Suy ra \(2(a^3+b^3+c^3)\geq ab(a+b)+bc(b+c)+ac(c+a)\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
14 tháng 8 2017

Lời giải:

a)

Áp dụng BĐT Cauchy:

\((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)

Do đó ta có đpcm. Dấu bằng xảy ra khi \(a=b=c\geq 0\)

b) Áp dụng BĐT Cauchy:

\((a+b+c)(a^2+b^2+c^2)\geq 3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)

Do đó ta có đpcm. Dấu bằng xảy ra khi \(a=b=c\geq 0\)

c) Áp dụng BĐT Cauchy:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}\)

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\)

Cộng theo vế:\(\Rightarrow 3\geq 3\frac{1+\sqrt[3]{abc}}{\sqrt[3]{(a+1)(b+1)(c+1)}}\)

\(\Leftrightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3\)

Dấu bằng xảy ra khi $a=b=c$

14 tháng 8 2017

Ace Legona Akai Haruma Giúp em với .

15 tháng 2 2017

đặt 1+m=p^2; đk : m>=-1 ; p>=0 (*)

đặt 2x=y

BPT tương đương

\(y^2-\left(p^2+p-1\right)y+\left(p^2-1\right)p< 0\) (1)

xét pt: \(y^2-\left(p^2+p-1\right)y+\left(p^2-1\right)p=0\) (2)

\(\Delta_y=\left(p^2-1+p\right)^2-4p\left(p^2-1\right)=\left(p^2-1\right)^2+2p\left(p^2-1\right)+p^2-4p\left(p^2-1\right)\)

\(\Delta_y=\left(p^2-1-p\right)^2\ge0\) với mọi p theo (*)

Vậy (2) có nghiệm với mọi (p) theo (*)

\(\left[\begin{matrix}y_1=\frac{\left(p^2+p-1\right)-\left(p^2-p-1\right)}{2}=\frac{2p}{2}=p\\y_2=\frac{\left(p^2+p-1\right)+\left(p^2-p-1\right)}{2}=\frac{p^2-2}{2}\end{matrix}\right.\)

xét f(p)=y2-y1= \(\frac{p^2-2}{2}-p=\frac{p^2-p-2}{2}=\frac{\left(p+1\right)\left(p-2\right)}{2}\\ \)

=> \(\left\{\begin{matrix}p=-1;2\Rightarrow f\left(p\right)=0\\-1< p< 2\Rightarrow\\p>2\Rightarrow f\left(p\right)>0\end{matrix}\right.f\left(p\right)< 0}\)

Vậy ta có kết luận(1):

1.Nếu \(P=2\Rightarrow\left(2\right)cóN_0....y_1=y_2\) thì (1) vô Nghiệm

2.Nếu \(0\le P< 2\Rightarrow\left(2\right)cóN_0....y_1>y_2\)=> (1) có nghiệm \(y_2< y< y_1\)

3.Nếu \(P>2\Rightarrow\left(2\right)cóN_0....y_1< y_2\) => (1) có nghiệm \(y_1< y< y_2\)

Bạn làm tiếp phần y--> x ; p--> m

(đơn giải rồi)

17 tháng 2 2017

Mục đích là so sánh y1 và y2 để xem cái nào lớn , nhỏ hay bằng nhau

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Lời giải:

Áp dụng công thức tính góc giữa hai đường thẳng thôi:

\(\cos (d,\Delta)=\frac{|(m+3)(m-2)-(m-1)(m+1)|}{\sqrt{(m+3)^2+(m-1)^2}\sqrt{(m-2)^2+(m+1)^2}}=\cos 90=0\)

\(\Leftrightarrow (m+3)(m-2)-(m-1)(m+1)=0\)

\(\Leftrightarrow m-5=0\Leftrightarrow m=5\)

Vậy $m=5$

22 tháng 2 2017

a)\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow a^2+2ab+b^2\ge4ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra khi \(a=b\)

b)Áp dụng BĐT AM-GM ta có:

\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ab}{c}}=2b\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\end{matrix}\right.\)

Cộng từng vế của 3 BĐT trên rồi thu gọn ta được điều cần chứng minh

Dấu "=" xảy ra khi \(a=b=c\)

c)Áp dụng BĐT AM-GM ta có:

\(\frac{3a+5b}{2}\ge\sqrt{3a\cdot5b}\Leftrightarrow\left(3a+5b\right)^2\ge4\cdot15P\)

\(\Leftrightarrow12^2\ge60P\Leftrightarrow P\le\frac{12}{5}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}a=2\\b=\frac{6}{5}\end{matrix}\right.\)

24 tháng 2 2017

cảm ơn nha ! vui

25 tháng 7 2016

Tổng và hiệu của hai vectơ

27 tháng 7 2016

VT=\(\overrightarrow{MB}\)+\(\overrightarrow{BA}\)+\(\overrightarrow{MD}\)+\(\overrightarrow{DC}\)

    =(\(\overrightarrow{MB}\)+\(\overrightarrow{MD}\))+(\(\overrightarrow{BA}\)+\(\overrightarrow{DC}\))

    =\(\overrightarrow{MB}\)+\(\overrightarrow{MD}\)+\(\overrightarrow{0}\) (vì \(\overrightarrow{BA}\) và \(\overrightarrow{DC}\) đối nhau)

    =\(\overrightarrow{MB}\)+\(\overrightarrow{MD}\)(đpcm)

22 tháng 12 2019
https://i.imgur.com/sjqJMto.jpg
8 tháng 1 2021

hơn 1 năm rồi không ai làm :'(

a) Áp dụng bđt Cauchy ta có :

\(a+b\ge2\sqrt{ab}\)(1)

\(b+c\ge2\sqrt{bc}\)(2)

\(c+a\ge2\sqrt{ca}\)(3)

Nhân (1), (2), (3) theo vế

=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8\sqrt{\left(abc\right)^2}=8\left|abc\right|=8abc\)

=> đpcm

Dấu "=" xảy ra <=> a=b=c