K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

máu biếng tới tận não:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\left[\left(a+b\right)^3+c^2\right]-ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\dfrac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}=0\)

\(\Leftrightarrow\left(a+b+c\right)\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a-b=b-c=c-a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Mà a,b,c >0

=> a = b = c

=> S = 3

\(\)

22 tháng 12 2019

sao mấy bn giỏi wá z

Mấy bài này mik chả hỉu j cả T^T

9 tháng 1 2017

Năm sau em học lớp 8 em làm giùm cko

9 tháng 1 2017

ko biết làm

30 tháng 1 2017

a3+b3+c3=3abc <=> (a+b)3-3ab(a+b)+c3=3abc

<=> (a+b+c)3-3(a+b)c(a+b+c)-3ab(a+b)-3abc=0

<=> (a+b+c)3-3c(a+b)(a+b+c)-3ab(a+b+c)=0

<=>(a+b+c)(a2+b2+c2+2ab+2bc+2ca-3ac-3bc-3ab)=0

<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0

<=> (a+b+c)\(\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}\)=0

<=> \(\left[\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

mà a,b,c dương nên a+b+c khác 0 => a=b=c

30 tháng 1 2017

ta dễ dàng chứng minh a=b=c

A=3

4 tháng 1 2018

cho mình sữa lại là  - c2017 / a2017 chứ ko phãi là c2017  - a2017 nha

30 tháng 7 2017

thiếu đề bài rồi 

30 tháng 7 2017

Cái đề là  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}???\)

28 tháng 12 2017

ta có: ab+bc+ca= 2017.abc

=> \(\dfrac{ab+bc+ca}{abc}=2017\)

=> \(\dfrac{b.\left(a+c\right)+ca}{abc}=2017\)

=> \(\dfrac{\left(a+c\right)+ca}{ac}=2017\)

=> a+c= 2017

Làm được tới đó thôi, ai giúp thì làm tiếp................

14 tháng 8 2023

Rúp mình với a

NV
20 tháng 1 2019

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{ab+ac+bc}{abc}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\a=-c\\b=-c\end{matrix}\right.\)

Đến đây thì nghi ngờ bạn chép sai đề biểu thức R, lẽ ra phải là dấu nhân mới tính được, nếu ko thì kết quả vẫn còn 2 ẩn

\(R=\left(a^{2017}+b^{2017}\right)\left(b^{2019}+c^{2019}\right)\left(c^{2021}+a^{2021}\right)\)

Thế này mới chính xác, kết quả \(R=0\)