Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt a2+b2+c2=S;ab+bc+ca=P
(a+b+c)2=9=a2+b2+c2+2(ab+bc+ca)=S+2P
áp dụng bunhia ta có:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=3\)
\(\Rightarrow S\ge3\)
\(\Leftrightarrow27S\ge81\)
\(\Leftrightarrow81S\ge7S^2+S^2-18S+81+72S-8S^2\)
\(\Leftrightarrow81S^2\ge7S^2+\left(9-S\right)^2+8S\left(9-S\right)\)
\(\Leftrightarrow81S\ge7S^2+4P^2+16SP\)
\(\Leftrightarrow81\left(a^2+b^2+c^2\right)\ge7\left(a^2+b^2+c^2\right)^2+4\left(ab+bc+ca\right)^2+16\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\left(Q.E.D\right)\)
dấu = xảy ra khi a=b=c=1
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
\(bdt\Leftrightarrow a^2+b^2+c^2-ab-ac-bc-\frac{\left(a+b\right)^2}{26}-\frac{\left(b-c\right)^2}{6}-\frac{\left(c-a\right)^2}{2009}\ge0\)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]-\frac{\left(a+b\right)^2}{26}-\frac{\left(b-c\right)^2}{6}-\frac{\left(c-a\right)^2}{2009}\ge0\)
Đặt \(a-b=x;b-c=y;c-a=z\) nên
\(bdt\Leftrightarrow\frac{1}{2}\left(x^2+y^2+z^2\right)-\frac{x^2}{26}-\frac{y^2}{6}-\frac{z^2}{2009}\ge0\)
\(\Leftrightarrow\left(\frac{x^2}{2}-\frac{x^2}{26}\right)+\left(\frac{y^2}{2}-\frac{y^2}{6}\right)+\left(\frac{z^2}{2}-\frac{z^2}{2009}\right)\ge0\)
\(\Leftrightarrow\frac{6x^2}{13}+\frac{y^2}{3}+\frac{2007z^2}{4018}\ge0\)(luôn đúng \(\forall x;y;z\))
Vậy BTĐ đã được chứng minh
Với \(a^2+b^2+c^2=1\), ta có: \(\Sigma\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+c^2+ab-c^2}}\)
\(=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\Sigma\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\)
\(\ge\Sigma\frac{ab+2c^2}{\frac{\left(ab+2c^2\right)+\left(a^2+b^2+ab\right)}{2}}=\Sigma\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+2ab+2c^2}{2}}\)
\(\ge\text{}\Sigma\text{}\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+\left(a^2+b^2\right)+2c^2}{2}}=\Sigma\frac{ab+2c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}\)
\(=\Sigma\left(ab+2c^2\right)=2\left(a^2+b^2+c^2\right)+ab+bc+ca\)
\(=2+ab+bc+ca\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
Lại có: \(a^2+1+b^2+1+c^2+1\ge2\left(a+b+c\right)\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)=12\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
Dấu = xảy ra khi a=b=c=1