K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

Đặt \(a=x+\frac{1}{3},b=y+\frac{1}{3},c=z+\frac{1}{3}\)

\(\Rightarrow a+b+c=x+y+z+1=1\Rightarrow x+y+z=0\)

Ta có \(a^2+b^2+c^2=\left(x+\frac{1}{3}\right)^2+\left(y+\frac{1}{3}\right)^2+\left(z+\frac{1}{3}\right)^2=\left(x^2+y^2+z^2\right)+\frac{2}{3}\left(x+y+z\right)+\frac{1}{3}\)

\(=\left(x^2+y^2+z^2\right)+\frac{1}{3}\ge\frac{1}{3}\)

Dấu "=" xảy ra khi x = y = z = 0 => a = b = c = 1/3

29 tháng 4 2020

\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{2}\left(a+b+c\right)\)\(=\left(\frac{1}{a}+\frac{3a}{2}\right)+\left(\frac{1}{b}+\frac{3b}{2}\right)+\left(\frac{1}{c}+\frac{3c}{2}\right)\)

*Nháp*

Dự đoán điểm rơi tại a = b = c = 1 khi đó  \(VT=\frac{15}{2}\)

Ta dự đoán BĐT phụ có dạng \(\frac{1}{x}+\frac{3x}{2}\ge mx^2+n\)(Ta thấy các hạng tử trong điều kiện đã cho ban đầu đều có bậc là 2 nên VP của BĐT phụ cũng có bậc là 2)    (*)

Do đó ta có: \(\frac{1}{a}+\frac{3a}{2}\ge ma^2+n\);\(\frac{1}{b}+\frac{3b}{2}\ge mb^2+n\);\(\frac{1}{c}+\frac{3c}{2}\ge mc^2+n\)

Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge m\left(a^2+b^2+c^2\right)+3n=3\left(m+n\right)=\frac{15}{2}\)

\(\Rightarrow m+n=\frac{5}{2}\Rightarrow n=\frac{5}{2}-m\)

Thay\(n=\frac{5}{2}-m\)vào (*), ta được: \(\frac{1}{x}+\frac{3x}{2}\ge mx^2+\frac{5}{2}-m\)

\(\Leftrightarrow\frac{1}{x}+\frac{3x}{2}-\frac{5}{2}\ge m\left(x^2-1\right)\Leftrightarrow\frac{\left(x-1\right)\left(3x-2\right)}{2x\left(x+1\right)}\ge m\left(x-1\right)\)

\(\Leftrightarrow m\le\frac{3x-2}{2x\left(x+1\right)}\)(**)

Đồng nhất x = 1 vào (**), ta được: \(m=\frac{1}{4}\Rightarrow n=\frac{9}{4}\)

Như vậy, ta được BĐT phụ: \(\frac{1}{x}+\frac{3x}{2}\ge\frac{x^2+9}{4}\)

GIẢI:

Ta có a,b,c là các số thực dương và \(a^2+b^2+c^2=3\Rightarrow0< a^2;b^2;c^2\le3\Rightarrow0< a,b,c\le\sqrt{3}\)

Ta chứng minh BĐT phụ: \(\frac{1}{x}+\frac{3x}{2}\ge\frac{x^2+9}{4}\)(với \(0< x\le\sqrt{3}\))

\(\Leftrightarrow\frac{\left(4-x\right)\left(x-1\right)^2}{4x}\ge0\)(Đúng với mọi \(0< x\le\sqrt{3}\))

Áp dụng ta được: \(\frac{1}{a}+\frac{3a}{2}\ge\frac{a^2+9}{4}\);\(\frac{1}{b}+\frac{3b}{2}\ge\frac{b^2+9}{4}\);\(\frac{1}{c}+\frac{3c}{2}\ge\frac{c^2+9}{4}\)

Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge\frac{\left(a^2+b^2+c^2\right)+9.3}{4}=\frac{15}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)

7 tháng 4 2017

bình phương bđt cần chứng minh lên rồi AM-GM cho từng cặp 2 số

7 tháng 4 2017

Chỉ có thần tiên mới giúp được b. Cho a,b,c mà bảo chứng minh x,y,z :3

20 tháng 7 2017

thỏa cái j sửa đi

8 tháng 3 2019

1/ Ta cần c/m: \(3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

Tức là \(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (đúng)

Ta có đpcm.

20 tháng 5 2019

\(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\Leftrightarrow\)\(4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{16}\le\frac{49}{16}\)

\(\Leftrightarrow\)\(\left[2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{4}\right]^2\le\frac{49}{16}\)

\(\Leftrightarrow\)\(\frac{-7}{4}\le2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{4}\le\frac{7}{4}\)

\(\Leftrightarrow\)\(\frac{-3}{4}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)

Có : \(\frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\le\frac{1}{6}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=3\)

...