Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 bài BĐT rất hay !!!!!!
BẠN PHÁ TOANG RA HẾT NHÁ SAU ĐÓ THÌ ĐƯỢC CÁI NÀY :33333
\(S=15\left(a^3+b^3+c^3\right)+6\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)-72abc\)
\(S=9\left(a^3+b^3+c^3\right)+6\left(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\right)-72abc\)
\(S=9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-72abc\)
TA ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\end{cases}}\)
=> \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\)
=> \(72abc\le8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(-72abc\ge-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(S\ge9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(S\ge9\left(a^3+b^3+c^3\right)-2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}\left(a+b+c\right)\)
TA LẠI TIẾP TỤC ÁP DỤNG BĐT SAU: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow\left(a+b+c\right)^2\le\frac{1}{3}\Rightarrow a+b+c\le\sqrt{\frac{1}{3}}\)
=> \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}.\sqrt{\frac{1}{3}}\)
TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:
\(a^3+a^3+\left(\sqrt{\frac{1}{27}}\right)^3\ge3a^2.\sqrt{\frac{1}{27}}\)
ÁP DỤNG TƯƠNG TỰ VỚI 2 BIẾN b; c ta sẽ được 1 BĐT như sau:
=> \(2\left(a^3+b^3+c^3\right)+3\left(\sqrt{\frac{1}{27}}\right)^3\ge\frac{3}{\sqrt{27}}\left(a^2+b^2+c^2\right)=\frac{3}{\sqrt{27}}.\left(\frac{1}{9}\right)=\frac{\sqrt{3}}{27}\)
=> \(a^3+b^3+c^3\ge\frac{\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}\)
=> \(S\ge\frac{9\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}-\frac{2}{9}.\sqrt{\frac{1}{3}}\)
=> \(S\ge\frac{1}{\sqrt{3}}\)
VẬY TA CÓ ĐPCM.
DẤU "=" XẢY RA <=> \(a=b=c=\sqrt{\frac{1}{27}}\)
Xét \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=\left(a^4-2a^2b^2+b^4\right)-2c^2\left(a^2-b^2\right)+c^4-4c^2b^2\)
=\(\left(a^2-b^2\right)^2-2\left(a^2-b^2\right)c^2+c^4-4c^2b^2=\left(a^2-b^2-c^2\right)^2-4c^2b^2\)
=\(\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)
=\(\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)
Mà a,b,c là 3 cạnh tam giác => a-b-c<0 ;a+b+c>0;a-b+c>0;a+b-c>0
=>\(...< 0\Rightarrow a^4+b^4+c^4< 2a^2b^2+2b^2c^2+2c^2a^2\left(ĐPCM\right)\)
ta có\(a^4+b^4+c^4< 2a^2b^2+2c^2a^2+2b^2c^2\)
<=> \(-a^4-b^4-c^4+2a^2b^2+2a^2c^2+2b^2c^2>0\)
<=>\(4a^2c^2-\left(a^4+b^4+c^4-2a^2b^2+2a^2c^2-2b^2c^2\right)>0\)
<=> \(4a^2c^2-\left(a^2-b^2+c^2\right)^2>0\)
<=>.......
<=>(a+b+c)(a+c-b)(a+b-c)(b-a+c)>0
luôn đúng vì a,b,c là 3 cạnh của 1 tam giác
vậy bđt trên dc cm dễ dàng
TA có \(a^3+b^3+c^3\ge3abc\Rightarrow-a^3-b^3-c^3\le-3abc\)
Cần chứng minh \(a^2b+b^2c+c^2a+ca^2+bc^2+ab^2-3abc\ge0\)
\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a+c\right)-3abc\)
\(\ge abc+abc+abc-3abc=0\)