Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
a2b ( a - b ) + b2c ( b - c ) + c2a ( c - a )
= ( a3b + b3c + c3a ) - ( a2b2 + b2c2 + c2a2 )
= \(abc\left(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\right)-\left(abc\right)^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\ge abc.\left(\frac{\left(a+b+c\right)^2}{a+b+c}\right)-\left(abc\right)^2.\frac{9}{a^2+b^2+c^2}=abc\left(a+b+c\right)-\left(abc\right)^2.\frac{9}{a^2+b^2+c^2}\)
Mà \(\left(a+b+c\right)^3\ge27abc\)
\(abc\left(a+b+c\right)-\left(abc\right)^2.\frac{9}{a^2+b^2+c^2}\ge abc\left[\left(a+b+c\right)-\frac{\left(a+b+c\right)^3}{3\left(a^2+b^2+c^2\right)}\right]\)
\(=\frac{abc}{3\left(a^2+b^2+c^2\right)}\left[3\left(a+b+c\right)\left(a^2+b^2+c^2\right)-\left(a+b+c\right)^3\right]\)
\(=\frac{abc}{3\left(a^2+b^2+c^2\right)}2\left(a^3+b^3+c^3-3abc\right)\)
vì a3 + b3 + c3 - 3abc \(\ge\)0 nên a2b(a - b ) + b2c ( b - c ) + c2a ( c - a ) \(\ge\)0
Không mất tính tổng quát ta giả sử:
\(a\ge b\ge c>0\)
\(BDT\Leftrightarrow a\left(b+c-a\right)\left(b-c\right)^2+b\left(a-b\right)\left(a-c\right)\left(a+b-c\right)\ge0\)
Cái này đúng
\(\Rightarrow\)ĐPCM
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(B=\frac{1}{(a+2b)(a+2c)}+\frac{1}{(b+2a)(b+2c)}+\frac{1}{(c+2a)(c+2b)}\)
\(\geq \frac{9}{(a+2b)(a+2c)+(b+2a)(b+2c)+(c+2a)(c+2b)}\)
\(\Leftrightarrow B\geq \frac{9}{(a^2+2ac+2ab+4bc)+(b^2+2bc+2ab+4ac)+(c^2+2bc+2ac+4ab)}\)
\(\Leftrightarrow B\geq \frac{9}{a^2+b^2+c^2+8(ab+bc+ac)}=\frac{9}{(a+b+c)^2+6(ab+bc+ac)}(*)\)
Theo hệ quả quen thuộc của BĐT Cô-si:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow 2(a+b+c)^2\geq 6(ab+bc+ac)(**)\)
Từ \((*); (**)\Rightarrow B\geq \frac{9}{(a+b+c)^2+2(a+b+c)^2}=\frac{3}{(a+b+c)^2}\geq \frac{3}{3^2}=\frac{1}{3}\)
(do \(a+b+c\leq 3)\)
Do đó: \(B_{\min}=\frac{1}{3}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .
\(VT-VP=\frac{\Sigma_{cyc}\left(a-b+c\right)\left(a-b\right)^2}{abc}\ge0\) ( do a,b,c là 3 cạnh của 1 tam giác )
B1:
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Xét hiệu:
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\)
\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
=> BĐT luôn đúng
*
Ta có:
\(a< b+c\Rightarrow a^2< ab+ac\)
\(b< a+c\Rightarrow b^2< ab+ac\)
\(c< a+b\Rightarrow a^2< ac+bc\)
Cộng từng vế bất đẳng thức ta được:
\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Vậy: \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
B2:
Ta có: \(a+b>c\) ; \(b+c>a\); \(a+c>b\)
Xét:\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{a+b+c}+\dfrac{1}{a+c+b}=\dfrac{2}{a+b+c}>\dfrac{2}{b+c+b+c}=\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+c+a+c}=\dfrac{1}{a+c}\)
Suy ra:
\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
=> ĐPCM
Theo em được biết thì bài a) chính là BĐT IMO 1983. Có cách giải quen thuộc là dùng phép thế Ravi ngoài ra còn có một lời giải tuyệt đẹp của Bernhard Leeb như sau:
a) Giả sử \(a=max\left\{a,b,c\right\}\). Ta có:\(VT=a\left(b+c-a\right)\left(b-c\right)^2+b\left(a+b-c\right)\left(a-b\right)\left(a-c\right)\ge0\)
Ngoài ra, từ cách phân tích trên em cũng tìm được một cách phân tích như sau:
Giả sử \(c=max\left\{a,b,c\right\}\). Ta có:
\(VT=\frac{\left[3ab+b\left(c-b\right)+4a\left(c-a\right)\right]\left(b-c\right)^2+b\left(a+b-c\right)\left(b+c-2a\right)^2}{4}\ge0\)(qed)
b) BĐT Schur bậc 3.