Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)
\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)
\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)
\(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)
\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)
\(1+a^2=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)
Tương tự, ta có: \(1+b^2=\left(a+b\right)\left(b+c\right)\)\(;\)\(1+c^2=\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow\)\(\frac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) ( do a, b, c dương )
\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}=\frac{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
...
Bạn chứng minh đẳng thức sau nhé: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\) \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.
Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)
Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Suy ra: x=y=z hay ab=bc=ac hay a=b=c.
Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.
1. Áp dụng BĐT Cauchy dạng Engle, ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)
\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)
Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)
\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)
Áp dụng BĐT Cauchy cho a ; b dương
Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)
Chứng minh BĐT Phụ: \(a^5+b^5\ge a^4b+ab^4\)với \(a;b>0\)
\(\Rightarrow\frac{a^5+b^5}{ab\left(a+b\right)}\ge\frac{a^4b+ab^4}{ab\left(a+b\right)}=\frac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\frac{ab\left(a+b\right)\left(a^2-ab+b^2\right)}{ab\left(a+b\right)}=a^2-ab+b^2\)
Áp dụng ta có: \(VT\)(VẾ TRÁI)\(\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\) \(\left(1\right)\)
Xét: \(\left[2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\right]-\left[3\left(ab+bc+ca\right)-2\right]\)
\(=2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+2\)
\(=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\) (Do a2+b2+c2=1) \(\left(2\right)\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\) Tự chứng minh \(\left(3\right)\)
Từ (1);(2) và (3) suy ra \(VT\ge3\left(ab+bc+ca\right)-2\)
Vậy \(\frac{a^5+b^5}{ab\left(a+b\right)}+\frac{b^5+c^5}{bc\left(b+c\right)}+\frac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)
Từ giả thiết của bài toán, ta biến đổi như sau:
\(a^2+b^2+c^2+\left(a+b+c\right)^2\le4\)
\(\Leftrightarrow a^2+b^2+c^2+ab+ac+bc\le2\)
Bất đẳng thức cần chứng minh tương đương với
\(A=\frac{ab+1}{\left(a+b\right)^2}+\frac{bc+1}{\left(b+c\right)^2}+\frac{ac+1}{\left(a+c\right)^2}\ge3\)
\(\Leftrightarrow\frac{2ab+2}{\left(a+b\right)^2}+\frac{2bc+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge6\)
Áp dụng giả thiết ta được
\(\frac{2ab+2}{\left(a+b\right)^2}+\frac{2ab+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge\text{∑}\frac{2ab+a^2+b^2+c^2+ab+bc+ac}{\left(a+b\right)^2}\)
\(=1+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+1+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c^2\right)}+1+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\)
\(=3+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c\right)^2}+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\ge\)
\(3+\sqrt[3]{\frac{\left(c+a\right)\left(c+b\right)\left(b+a\right)\left(c+b\right)\left(c+a\right)\left(a+b\right)}{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}}=3+3=6\)
Vậy bài toán đã được chứng minh. Đẳng thức xảy ra khi và chỉ khi a=b=c=13√.■
Với a,b là các số thực dương thỏa mãn ab+a + b = 1 .Suy ra 1 + a2 =ab + a + b + a2 = ( a+b) ( a + 1 )
1 + b2 = ab + a + b + b2 = (a + b) ( b + 1 )
Khi đó ta có :
\(vt=\frac{a}{1+a^2}+\frac{b}{1+b^2}=\frac{a}{\left(a+b\right)\left(a+1\right)}+\frac{b}{\left(a+b\right)\left(b+1\right)}=\frac{2ab+a+b}{\left(a+b\right)\left(a+1\right)\left(b+1\right)}\)
\(\frac{1+ab}{\left(a+b\right)\left(ab+a+b+1\right)}=\frac{1+ab}{2\left(a+b\right)}\)
\(vp=\frac{1+ab}{\sqrt{2\left(1+a^2\right)\left(1+b^2\right)}}=\frac{1+ab}{\sqrt{2\left(a+b\right)\left(a+1\right)\left(a+b\right)\left(b+1\right)}}\)
\(=\frac{1+ab}{\left(a+b\right)\sqrt{2\left(ab+a+b+1\right)}}=\frac{1+ab}{\left(a+b\right)\sqrt{2\left(1+1\right)}}=\frac{1+ab}{2\left(a+b\right)}\)
=> Đẳng thức được chứng minh