K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2023

Ta có

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (1)

Ta có

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)

\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\) (2)

Từ (1) và (2)

\(x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Rightarrow xy+yz+zx=0\)

8 tháng 12 2018

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)

\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)

\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)

\(\Leftrightarrow2\left(xy+yz+xz\right)=0\Leftrightarrow xy+yz+xz=0\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Lời giải:

a) Vì $abc=1$ nên ta có:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc.+ac+c}+\frac{b.ac}{bc.ac+b.ac+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+c+1}=1\)

(đpcm)

b)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow \left\{\begin{matrix} x=ka\\ y=kb\\ z=kc\end{matrix}\right.\)

\(x+y+z=ka+kb+kc=k(a+b+c)=k\)

\(x^2+y^2+z^2=k^2a^2+k^2b^2+k^2c^2=k^2(a^2+b^2+c^2)=k^2\)

\(\Rightarrow A=xy+yz+xz=\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=\frac{k^2-k^2}{2}=0\)

9 tháng 8 2017

1, Ta có: \(x+y=9\Rightarrow\left(x+y\right)^2=81\)

\(\Rightarrow x^2+2xy+y^2=81\)

\(\Rightarrow x^2+y^2=45\)

\(\Rightarrow x^2+y^2-2xy=9\)

\(\Rightarrow\left(x-y\right)^2=9\Rightarrow\left[{}\begin{matrix}x-y=3\\x-y=-3\end{matrix}\right.\)

\(A=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(\Rightarrow\left[{}\begin{matrix}A=3.63=189\\A=-3.63=-189\end{matrix}\right.\)

Vậy...

5 tháng 4 2017

Bài 1:

a) Để (1) là pt bậc nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)

---- hình như là còn đk m khác x+2 -------

b) Ta có ; (1) <=> (m-2)x = 2 (*)

7-4x = 2x -5 <=> 6x = 12 <=> x= 2 (**)

Từ (*) và (**) => m-2 = 1 <=> m=3

27 tháng 4 2018

Áp dụng BĐT :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ≥ 9

Trong đó : a = xy ; b = yz ; c = xz

⇒ ( xy + yz + xz )\(\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) ≥ 9 ( * )

Áp dụng BĐT cô - si :

x2 + y2 ≥ 2xy ( x > 0 ; y > 0) ( 1 )

y2 + z2 ≥ 2yz ( y > 0 ; z > 0 ) ( 2)

z2 + x2 ≥ 2xz ( z >0 ; x > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3) ⇒ x2 + y2 + z2 ≥ xy + yz + xz ( **)

Từ ( * ; **)

⇒(x2 + y2 + z2).A ≥ ( xy + yz + xz). A ≥ 9

⇒ 3A ≥ 9

⇒ A ≥ 3

⇒ AMIN = 3 ⇔ x = y = z

27 tháng 4 2018

thanks nha

21 tháng 4 2017

Xin lỗi mình viết thiếu

Bổ sung: x2+y2+z2<3

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Và $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}$ thế nào hả bạn?

14 tháng 5 2018

b)\(N=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}\)

\(N=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\)

\(N=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

Ta cm đẳng thức sau:\(x^3+y^3+z^3=3xyz\Leftrightarrow x+y+z=0\)

ĐT\(\Leftrightarrow x^3+y^3-3xyz=-z^3\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-3xy=-z^3\)

\(\Leftrightarrow-zx^2+xyz-zy^2-3xyz=-z^3\)

\(\Leftrightarrow x^2+2xy+y^2=z^2\)

\(\Leftrightarrow\left(x+y\right)^2=z^2\)

\(\Leftrightarrow\left(-z\right)^2=z^2\)(luôn đúng)

Áp dụng\(\Rightarrow N=xyz.\dfrac{3}{xyz}=3\)

14 tháng 5 2018

a, (M-1)/70-71=m

m=(71^9+71^8....71+1)

71m=71^10+...71^2+71

70m=71^10-1

(M-1)/70=71^10+70

M-1=70(71^10+70)

M=70(71^10+70)-1