K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2015

Ta co a^2+c^2/b^2+a^2=c/b

       => (a^2+c^2) x b= (b^2+a^2) x c

       => a^2b+c^2b=b^2c+a^2c

       =>  bcb+c^2b=b^2c+bcc

        => b^2c+c^2b=b^2c+bc^2

6 tháng 7 2015

 

Thay \(a^2=b.c\) Ta có

\(\frac{b.c+c^2}{b^2+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)(dpcm)

20 tháng 11 2016

bạn nào giúp mùnh với! Chiều nay mình phải nộp rồi.

16 tháng 12 2018

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

27 tháng 3 2024

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

2 tháng 8 2015

giúp mình với nha các bạn

20 tháng 2 2018

\(b^2\)\(ac\)=> \(\frac{a}{b}\)\(\frac{b}{c}\)(1)

\(c^2\)\(bd\)=> \(\frac{b}{c}\)\(\frac{c}{d}\)(2)

từ (1) và (2) => \(\frac{a}{b}\)\(\frac{b}{c}\)\(\frac{c}{d}\)=> \(\frac{a^3}{b^3}\)\(\frac{c^3}{d^3}\)\(\frac{b^3}{c^3}\)=> \(\frac{a^3}{b^3}\)\(\frac{a}{b}\)*   \(\frac{b}{c}\)*   \(\frac{c}{d}\)\(\frac{a}{d}\)         (*)

\(\frac{a^3}{b^3}\)=   \(\frac{b^3}{c^3}\)=  \(\frac{c^3}{d^3}\)=   \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)            (**)

Từ (*) và (**) => \(\frac{a}{d}\)\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)  (đpcm)

4 tháng 11 2015

b2 = ac => a/b = b/c

c2 = bd => b/c = c/d

=> a/b = b/c = c/d => a3/b= b3/c= c3/d3 = (a+ b3 + c3) / (b3 + c3 + d3) (Theo t/c của dãy tỉ số bằng nhau)

Mà a3/b= a/b .a/b .a/b = a/b. b/c . c/d = a/d

Nên  (a+ b3 + c3) / (b3 + c3 + d3) = a/d

3 tháng 11 2015

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

Mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

1 tháng 12 2016

\(\frac{a.b}{a+b}=\frac{b.c}{b+c}=\frac{c.a}{c+a}\)

\(\Rightarrow\frac{a+b}{a.b}=\frac{b+c}{b.c}=\frac{c+a}{c.a}\) (vì a;b;c khác 0)

\(=\frac{a}{a.b}+\frac{b}{a.b}=\frac{b}{b.c}+\frac{c}{b.c}=\frac{c}{c.a}+\frac{a}{c.a}\)

\(=\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

=> a = b = c

\(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+a.a^2+a.a^2}{a^3+a^3+a^3}=\frac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)