K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
1 tháng 10 2017

Mình đặt bằng A cho dễ tính nha

A=a/b+a/c+b/c+b/a+c/b+c/a

Áp dụng bst cosi ta có:

a/b+b/a\(\ge\)2√(a.b/b.a)=2

Tươn tự ta chứng minh được

a/c+c/a\(\ge\)2

b/c+c/b\(\ge\)2

Suy ra

A\(\ge\)6

11 tháng 10 2018

Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.

11 tháng 10 2018

mk viết nhầm

\(ab+bc+ca=1\)

bn giúp mk với

25 tháng 10 2017

cái này ra rồi , nên không cần nữa nhé!

21 tháng 6 2018

Sử dụng Cô-si đc ko bạn?

2 tháng 12 2017

Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)

\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)

Thật vậy, ta có:

\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)

Vậy ta cần chứng minh:

\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)

Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c


AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Lời giải:

Ta có:

\(\text{VT}=\frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+\frac{c}{(c+1)(a+1)}\)

\(=\frac{a(c+1)+b(a+1)+c(b+1)}{(a+1)(b+1)(c+1)}=\frac{ab+bc+ac+a+b+c}{abc+(ab+bc+ac)+(a+b+c)+1}\)

\(=\frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\)

Ta cần chứng minh \(\text{VT}\geq \frac{3}{4}\)

\(\Leftrightarrow \frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\geq \frac{3}{4}\)

\(\Leftrightarrow 4(ab+bc+ac+a+b+c)\geq 3(ab+bc+ac+a+b+c)+6\)

\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\)

\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\sqrt[6]{ab.bc.ac.a.b.c}\)

(Đúng theo BĐT Cô-si)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\)

14 tháng 5 2018

em cảm ơn nhiều nha

16 tháng 10 2018

Giải:

\(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)(*)

\(\Leftrightarrow\) \(\dfrac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{3}{4}\)

\(\Leftrightarrow\) \(\dfrac{ac+a+ab+b+bc+c}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\) \(\ge\) \(\dfrac{3}{4}\)

Do a+1 ; b+1; c+1 >0

\(\Rightarrow\) 4ac+4a+4ab+4b+4bc+4c \(\ge\) 3abc+3ac+3bc+3ab+3a+3b+3c+3

\(\Leftrightarrow\) ac+ab+bc+a+b+c -6 \(\ge\) 0

Áp dụng BĐT Cô-si cho 3 số

Ta có: a+b+c \(\ge\) \(3\sqrt[3]{abc}=3\)

ab+bc+ca \(\ge\) \(3\sqrt[3]{\left(abc\right)^2}\) = 3

\(\Rightarrow\)ac+ab+bc+a+b+c -6 \(\ge\) 0 ( luôn đúng)

\(\Rightarrow\) (*) được chứng minh

Dấu "=" xảy ra \(\Leftrightarrow\) a=b=c=1

27 tháng 5 2018

Mashiro Shiina Akai Haruma GIÚP EM VỚI