Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a2 + b2 = c2 + d2
=>a2-c2=d2-b2
=>(a-c)(a+c)=(d-b)(d+b) (1)
Lại có: a + b = c + d
=>a-c=d-b
Nếu a=c => b=d hiễn nhiên biểu thức:
a2002 + b2002 = c2002 + d2002 đúng. (II)
Nếu ac =>bd
=>a-c=d-b0
Khi đó biểu thức (1) trở thành:
a+c=b+d (a-c, d-b khác không nên ta có thể đơn giản)
mà: a + b = c + d
cộng hai biểu thức theo vế ta được:
2a+b+c=b+c+2d
=>2a=2d
=>a=d
=>b=c
Vì a=d và b=c nên biểu thức a2002 + b2002 = c2002 + d2002 đúng. (I)
Kết luận: với điều kiện đềcho ta luôn có: a2002 + b2002 = c2002 + d2002.
ta có : a^2 +b^2 =c^2 +d^2 => a^2 -c^2=d^2-b^2
<=> (a-c)(a+c)=(d-b)(d+b) (1)
Mặt khác : a+b=c+d => a-c=d-b (2)
Từ (1),(2) => (a-c)(a+c-d-b)=0
\(\Rightarrow\orbr{\begin{cases}a-c=0\\a+c-d-b=0\end{cases}}\)
xét TH1: a-c=0 =>a=c mà a+b=c+d => a=c ; b=d
=> a^2002 +b^2002 =c^2002 +d^2002 (đpcm
xét TH2: a+c-d-b=0
\(\Rightarrow\hept{\begin{cases}a-b=d-c\\a+b=c+d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a=d\\b=c\end{cases}}\) \(\Rightarrow a^{2002}+b^{2002}=c^{2002}+d^{2002}\) (đpcm)
Ta thấy : a+b=c+d => \(\left(a+b\right)^2=\left(c+d\right)^2\)
<=> \(a^2+2ab+b^2=c^2+2cd+d^2\)(1)
Mà \(a^2+b^2=c^2+d^2\)(2)
Từ (1)(2) => 2ab=2cd => ab=cd => \(\frac{a}{d}=\frac{c}{b}=k\)
=> a=dk; c=bk
Ta xét : \(a^2+b^2=c^2+d^2\)
<=> \(\left(dk\right)^2+b^2=\left(bk\right)^2+d^2\)
<=> \(d^2\left(k^2-1\right)=b^2\left(k^2-1\right)\)
<=> \(\left(d^2-b^2\right)\left(k^2-1\right)=0\)
=>\(\left[\begin{array}{nghiempt}d^2-b^2=0\\k^2-1=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}d=\pm b\\k=\pm1\end{array}\right.\)
Th1 :d=\(\pm b\) mà \(\frac{a}{d}=\frac{c}{b}\)=> a=\(\pm c\)
=> \(d^{2002}=b^{2002};a^{2002}=c^{2002}\)
=> \(a^{2002}+b^{2002}=c^{2002}+d^{2002}\)(3)
Th2: k=\(\pm1\) => a\(=\pm d;c=\pm b\)
=> \(a^{2002}=d^{2002};c^{2002}=b^{2002}\)
=> \(a^{2002}+b^{2002}=c^{2002}+d^{2002}\)(4)
Từ (3)(4)=> đpcm
t
Có a2 + b2 = c2 + d2
=> a2 - c2 = d2 - b2
=> (a - c)(a + c) = (d - b)(d + b)
Mà a + b = c + d
=> a - c = d - b
- Nếu a = c
=> a - c = d - b = 0
=> d = b
=> a2002 = c2002 và d2002 = b2002
=> a2002 + b2002 = c2002 + d2002 (Đpcm)
- Nếu a \(\ne\) c
=> a - c = d - b (\(\ne\) 0)
=> d \(\ne\) b
Có (a - c)(a + c) = (d - b)(d + b)
=> a + c = d + b (1)
Mà a + b = c + d (2)
Lấy (1) + (2) ta được:
2a + b + c = b + c + 2d
=> 2a = 2d
=> a = d
=> c = b
=> a2002 = d2002 và c2002 = b2002
=> a2002 + b2002 = c2002 + d2002 (Đpcm)
Cho a + b = c + d và a2 + b2 = c2 + d2 . Chứng minh rằng : \(a^{2002}+b^{2002}=c^{2002}+d^{2002}\) .
Ta có: a^2 +b^2 = c^2+d^2<=>a^2-c^2=d^2-b^2
<=>(a-c)(a+c)=(d-b)(d+b) (1)
từ a+b=c+d => a-c=d-b
Thay vào (1) =>(a-c)(a+c)=(a-c)(d+b) (2)
+ Nếu a=c từ a+b=c+d => b=d
=>a^2002+b^2002=c^2002+d^2002
+Nếu a \(\ne\)c thì a - c \(\ne\) 0 từ (2) =>a+c = d+b
mà a+b=c+d => a+c+a+d=d=b+c+d
=>2a=2d=>a=d+>b=c
=>a^2002+b^2002=c^2002+d^2002
Ta có: a2 + b2 = c2 + d2
=>a2-c2=d2-b2
=>(a-c)(a+c)=(d-b)(d+b) (1)
Lại có: a + b = c + d
=>a-c=d-b
Nếu a=c => b=d hiễn nhiên biểu thức:
a2002 + b2002 = c2002 + d2002 đúng. (II)
Nếu ac =>bd
=>a-c=d-b0
Khi đó biểu thức (1) trở thành:
a+c=b+d (a-c, d-b khác không nên ta có thể đơn giản)
mà: a + b = c + d
cộng hai biểu thức theo vế ta được:
2a+b+c=b+c+2d
=>2a=2d
=>a=d
=>b=c
Vì a=d và b=c nên biểu thức a2002 + b2002 = c2002 + d2002 đúng. (I)
Kết luận: với điều kiện đềcho ta luôn có: a2002 + b2002 = c2002 + d2002.
Bạn ghi đề nhớ để dấu cho đúng nhé.
\(1.\) Cho \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\) \(\left(1\right)\)
\(CMR:\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
\(----------------------\)
Ta có:
Từ \(\left(1\right)\) \(\Rightarrow\) \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ca}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{bc}{c+a}+\frac{c^2}{a+b}=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\left(\frac{ab}{b+c}+\frac{ca}{b+c}\right)+\frac{b^2}{c+a}+\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\frac{c^2}{a+b}+\left(\frac{ca}{a+b}+\frac{bc}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\) \(\left(đpcm\right)\)
<=> a^3+b^3+c^3+d^3 = 3c^3-15d^3 = 3.(c^3-5d^3) chia hết cho 3
Xét a^3-a = a.(a^2-a)=(a-1).a.(a+1)
Ta thấy a-1;a;a+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 3 => a^3-a = (a-1).a.(a+1) chia hết cho 3
Tương tự : b^3-b;c^3-c;d^3-d đều chia hết cho 3
=> a^3+b^3+c^3+d^3-(a+b+c+d) chia hết cho 3
Mà a^3+b^3+c^3+d^3 chia hết cho 3 => a+b+c+d chia hết cho 3
=> ĐPCM
k mk nha
<=> a^3+b^3+c^3+d^3 = 3c^3-15d^3 = 3.(c^3-5d^3) chia hết cho 3
Xét a^3-a = a.(a^2-a)=(a-1).a.(a+1)
Ta thấy a-1;a;a+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 3 => a^3-a = (a-1).a.(a+1) chia hết cho 3
Tương tự : b^3-b;c^3-c;d^3-d đều chia hết cho 3
=> a^3+b^3+c^3+d^3-(a+b+c+d) chia hết cho 3
Mà a^3+b^3+c^3+d^3 chia hết cho 3 => a+b+c+d chia hết cho 3
=> ĐPCM
k
mk nha
:D
cau 1 ne:
a^2 + b^2 + c^2 + 3
theo bat dang thuc cosi ban se co
a^2 + a + 1 >= 3a
b^2 + b + 1 >= 3b
c^2 + c + 1 >= 3c
cong 3 ve bat dang thuc lai voi nhau ban se co
a^2 + b^2 + c^2 + (a + b + c) + 3>= 3(a + b + c)
=> a^2 + b^2 + c^2 + 3 >= 2(a + b + c)
dau = xay ra <=> a= b= c = 1
ma theo de bai ta lai co a^2 + b^2 + c^2 + 3 = 2(a + b + c)
=> a = b = c = 1 (dpcm)
b) (a - b)^2 + (b-c)^2 + (c - a)^2 = (a + b - 2c)^2 + (b + c - 2a)^2 + (c + a - 2b)^2
hay (a + b - 2b)^2 + (b + c - 2c)^2 + (c + a - 2a)^2 = (a + b - 2c)^2 + (b + c - 2a)^2 + (c + a - 2b)^2
dat. a + b = A
b + c = B
c + a = C
=> ban se co:
(A - 2b)^2 + (B - 2c)^2 + (C - 2a)^2 = (A - 2c)^2 + (B - 2a)^2 + (C - 2b)^2
tu day ban nhan pha ra roi rut gon 2 ve cho nhau ban se co
Ab + Bc + Ca = Ac + Ba + Cb
hay (a + b)b + (b + c)c + (c + a)a = (a + b)c + (b + c)a + (c + a)b
hay ab + b^2 + bc + c^2 + ac + a^2 = 2ab + 2bc + 2ac
hay a^2 + b^2 + c^2 - ab - bc - ac = 0
hay 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0
hay (a-b)^2 + (b-c)^2 +(c - a)^2 = 0
dau = xay ra <=> a = b = c (dpcm)
c) a^3 + b^3 + c^3 + d^3 = (a + b)(a^2 -ab +b^2) + (c+d)(c^2 - cd + d^2) (**)
ban nhan thay a + b + c + d = 0
=> a + b = - c - d
thay vao pt (**) ban se co
-(c + d)(a^2 - ab + b^2) + (c + d)(c^2 - cd + d^2)
(c + d)(c^2 - cd + d^2 -a^2 + ab - b^2)
hay (c + d)(ab - cd + (c^2 + d^2 - a^2 - b^2)) (***)
ban co a + b = - c - d
hay (a + b)^2 = (c + d)^2
hay a^2 + b^2 + 2ab = c^2 + d^2 + 2cd
hay c^2 + d^2 - a^2 - b^2 = 2ab - 2cd
thay vao pt (***) ban se co
(c + d)(ab - cd + 2ab - 2cd)
hay (c +d)(3ab - 3cd) = 3(c+d)(ab - cd) (dpcm)
ta có : a^2 +b^2 =c^2 +d^2 => a^2 -c^2=d^2-b^2
<=> (a-c)(a+c)=(d-b)(d+b) (1)
Mặt khác : a+b=c+d => a-c=d-b (2)
Từ (1),(2) => (a-c)(a+c-d-b)=0
⇒[
xét TH1: a-c=0 =>a=c mà a+b=c+d => a=c ; b=d
=> a^2002 +b^2002 =c^2002 +d^2002 (đpcm
xét TH2: a+c-d-b=0
⇒{
⇒{
https://olm.vn/hoi-dap/question/1051251.html
vào đây mà gợi ý nhé