Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
Ta có: \(ab=cd\)
\(\Leftrightarrow\frac{a}{d}=\frac{c}{b}\)
Đặt \(\frac{a}{d}=\frac{c}{b}=k\) \(\left(k\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}a=dk\\c=bk\end{cases}}\)
Ta có: \(a^5+b^5+c^5+d^5\)
\(=d^5k^5+b^5+b^5k^5+d^5\)
\(=k^5\left(d^5+b^5\right)+\left(d^5+b^5\right)\)
\(=\left(k^5+1\right)\left(d^5+b^5\right)\) là hợp số
=> đpcm
Gọi \(\left(a,c\right)=k\), ta có \(a=ka',c=kc'\)và \(\left(a',c'\right)=1\)
Thay vào ab = cd được \(ka'b=kc'd\)nên \(a'b=c'd\)(*)
\(\Rightarrow a'b⋮c'\)mà\(\left(a',c'\right)=1\)nên \(b⋮c'\). Đặt \(b=c't\left(t\inℕ^∗\right)\), thay vào (*) được \(a'c't=c'd\Rightarrow a't=d\)
Do đó \(a^5+b^5+c^5+d^5=k^5a'^5+c'^5t^5+k^5c'^5+a'^5t^5\)\(=a'^5\left(k^5+t^5\right)+c'^5\left(k^5+t^5\right)=\left(a'^5+c'^5\right)\left(k^5+t^5\right)\)
Do a', c', k, t là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
b,Cho a,b,c,d là các số nguyên thỏa mãn :5(a^3+b^3)=13(c^3+d^3).Chứng minh (a+b+c+d) cchia hết cho 6
bài 1. ta có
\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Leftrightarrow b^2+ab+\frac{a^2}{4}+c^2+ac+\frac{a^2}{4}+d^2+ad+\frac{a^2}{4}+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow\left(b+\frac{a}{2}\right)^2+\left(c+\frac{a}{2}\right)^2+\left(d+\frac{a}{2}\right)^2+\frac{a^2}{4}\ge0\) luôn đúng
Bài 2
ta có \(\frac{a^5}{b^5}+1+1+1+1\ge\frac{5.a}{b}\) (bất đẳng thức cauchy)
Tương tự ta có \(\frac{b^5}{c^5}+4\ge\frac{5b}{c};\frac{c^5}{a^5}+4\ge\frac{5c}{a}\)
\(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\)
Mà dễ dàng chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Nên ta có \(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
bài 1 : \(^{a^2+B^2+C^2+D^2}\)>hoặc =ab+ac+ad
\(^{a^2+b^2+c^2}\)- ab-ac-ad>hoặc = 0
\((\frac{1}{4}^{a^2-ab+b^2})+(\frac{1}{4}^{a^2-ac+c^2})+(\frac{1}{4}^{a^2-ad+d^2})\)>hoặc =0
\((\frac{1}{2}a-b)^2+(\frac{1}{2}a-c)^2+(\frac{1}{2}a-d)^2>=0\)
Vì \((\frac{1}{2}a-b)^2>=0\)với mọi \(A,b\varepsilon n\)
=> đpcm tự kết luận