Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a2 + b2 \(\ge2ab\)
\(c^2+d^2\ge2cd\)
Do abcd = 1 nên cd =\(\dfrac{1}{ab}\)( dùng \(x+\dfrac{1}{x}\ge\dfrac{1}{2}\))
Ta có :\(a^2+b^2+c^2\ge2\left(ab+cd\right)=2\left(ab+\dfrac{1}{ab}\right)\ge4\)(1)
Mặt khác : a(b+c) +b(c+d)+d(c+a)
=(ab+cd)+(ac+bd)+(bc+ad)
=\(\left(ab+\dfrac{1}{ab}\right)+\left(ac+\dfrac{1}{ac}\right)+\left(bc+\dfrac{1}{bc}\right)\ge2+2+2\)
Vậy \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge10\)
Từ giả thiết suy ra \(3\left(a^2b^2+b^2c^2+c^2a^2\right)\le\left(a^2+b^2+c^2\right)^2=9\to a^2b^2+b^2c^2+c^2a^2\le3.\)
Theo bất đẳng thức Cauchy-Schwart ta có \(\frac{a^3}{\sqrt{b^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^3}{\sqrt{a^3+3}}\ge\frac{4a^4}{a^2b^2+3a^2+4}+\frac{4b^4}{b^2c^2+3b^2+4}+\frac{4c^4}{c^2a^2+3c^2+4}\)
\(\ge\frac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2b^2+b^2c^2+c^2a^2\right)+3\left(a^2+b^2+c^2\right)+12}\ge\frac{4\times3^2}{3+3\cdot3+12}=\frac{3}{2}.\)
Dấu bằng xảy ra khi \(a=b=c=1\to\) giá trị bé nhất của P là \(\frac{3}{2}.\)
- bạn ghi rõ cái phần bất đẳng thức cauchy đc ko mk ko hiểu
Đặt \(N=a^2+b^2+c^2+d^2\)
Áp dụng BĐT Bunhiacopxki , ta có ; \(4N=\left(1^2+1^2+1^2+1^2\right)\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\ge\left(4.\sqrt[4]{abcd}\right)^2=16\)
\(\Rightarrow N\ge4\)
Đẳng thức xảy ra khi \(a=b=c=d=1\)
Vậy min N = 4 <=> a = b = c = d = 1
Đặt N\(\text{=a2+b2+c2+d2}\)
Áp dụng BĐT Bunhiacopxki , ta có ; 4N=\(\text{(12+12+12+12)(a2+b2+c2+d2)≥(a+b+c+d)2≥(4.4√abcd)2=16}\)
\(\text{⇒N≥4}\)
Đẳng thức xảy ra khi\(\text{ a=b=c=d=1}\)
Vậy min N = 4 <=> a = b = c = d = 1