K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

Ta có : \(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)

\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)

\(\Leftrightarrow ac+ad+bc+bd\ge ac+2\sqrt{acbd}+bd\)

\(\Leftrightarrow ad-2\sqrt{adbc}+bc\ge0\)

\(\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra khi : \(ad=bc\)

Vậy ... 

31 tháng 8 2020

Sử dụng bất đẳng thức Bunhiacopxki ta có :

\(\left(a+b\right)\left(c+d\right)=\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{c}^2+\sqrt{d}^2\right)\)

\(\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)

\(< =>\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\left(đpcm\right)\)

okey?

16 tháng 3 2017

có thiếu ĐK nào k bạn ?

áp dụng BĐT cauchy :

\(\dfrac{b}{\left(a+\sqrt{b}\right)^2}+\dfrac{d}{\left(c+\sqrt{d}\right)^2}\ge2\sqrt{\dfrac{bd}{\left(a+\sqrt{b}\right)^2\left(c+\sqrt{d}\right)^2}}=\dfrac{2\sqrt{bd}}{\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)}\)

việc còn lại cần chứng minh \(\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)\le2\left(ac+\sqrt{bd}\right)\)(đúng theo BĐT chebyshev)(không mất tính tổng quát giả sừ \(a\le\sqrt{b};c\le\sqrt{d}\))

dấu = xảy ra khi \(a=\sqrt{b};c=\sqrt{d}\)

AH
Akai Haruma
Giáo viên
15 tháng 8 2018

Lời giải:

Ta có:

\(\sqrt{(a+b)(c+d)}\geq \sqrt{ac}+\sqrt{bd}\)

\(\Leftrightarrow (a+b)(c+d)\geq (\sqrt{ac}+\sqrt{bd})^2\)

\(\Leftrightarrow ac+ad+bc+bd\geq ac+bd+2\sqrt{acbd}\)

\(\Leftrightarrow ad+bc-2\sqrt{acbd}\geq 0\)

\(\Leftrightarrow (\sqrt{ad}-\sqrt{bc})^2\geq 0\) (luôn đúng)

Ta có đpcm. Dấu "=" xảy ra khi $ad=bc$

Hoặc có thể áp dụng trực tiếp BĐT Bunhiacopxky:

\((a+b)(c+d)=[(\sqrt{a})^2+(\sqrt{b})^2][(\sqrt{c})^2+(\sqrt{d})^2]\)

\(\geq (\sqrt{ac}+\sqrt{bd})^2\)

\(\Rightarrow \sqrt{(a+b)(c+d)}\geq \sqrt{ac}+\sqrt{bd}\) (đpcm)

27 tháng 10 2016

Áp dụng Bđt Bunhiacopski, ta có:

\(ac+bd\le\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}\)

Mà \(\left(a+c\right)^2+\left(b+d\right)^2=a^2+b^2+2\left(ac+bd\right)\)

\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}+c^2+d^2\)

\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)

6 tháng 8 2018

Ta có BĐT \(\Leftrightarrow\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Leftrightarrow ab+cd+2\sqrt{abcd}\le ab+ac+bd+dc\)

\(\Leftrightarrow ac+bd\ge2\sqrt{abcd}\) (luôn đúng theo AM-GM)

p/s: mà cái BĐT bn cần chứng minh đó chính là BĐT Bunyakovsky đấy ^.^

23 tháng 1 2019

1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:

\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

12 tháng 9 2017

ý a ko cần giải đâu nha mk ra òi

Dễ thôi