K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

\(A=\dfrac{a^3}{b+c+d}+\dfrac{b^3}{a+c+d}+\dfrac{c^3}{a+b+d}+\dfrac{d^3}{a+b+c}\)

\(=\dfrac{a^4}{ab+ac+ad}+\dfrac{b^4}{ab+bc+bd}+\dfrac{c^4}{ac+bc+cd}+\dfrac{d^4}{ad+bd+cd}\)

\(\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\) (bđt Cauchy Shwarz dạng Engel)

Cần chứng minh \(\dfrac{a^2+b^2+c^2+d^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\ge\dfrac{1}{3}\)

\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2\ge2\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-d\right)^2+\left(b-c\right)^2+\left(c-d\right)^2\ge0\) *đúng*

Vậy ta có đpcm.

Dấu "=" xảy ra khi a = b = c = d

16 tháng 4 2017

Bài 1:ta có BĐt \(a^3+b^3\ge ab\left(a+b\right)\)vì nó tương đương với \(\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với a,b>0)

Áp dụng vào bài toán:

\(\dfrac{a^3+b^3}{2ab}+\dfrac{b^3+c^3}{2bc}+\dfrac{c^3+a^3}{2ac}\ge\dfrac{ab\left(a+b\right)}{2ab}+\dfrac{bc\left(b+c\right)}{2bc}+\dfrac{ca\left(c+a\right)}{2ac}=a+b+c\)dấu = xảy ra khi a=b=c

bài 2:

cần chứng minh \(\dfrac{a-b}{b+c}+\dfrac{b-c}{c+d}+\dfrac{c-d}{d+a}+\dfrac{d-a}{a+b}\ge0\)

hay \(\dfrac{a-b}{b+c}+1+\dfrac{b-c}{c+d}+1+\dfrac{c-d}{d+a}+1+\dfrac{d-a}{a+b}+1\ge4\)

\(\Leftrightarrow\dfrac{a+c}{b+c}+\dfrac{b+d}{c+d}+\dfrac{c+a}{d+a}+\dfrac{d+b}{a+b}\ge4\)

xét \(VT=\left(a+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+d}\right)+\left(b+d\right)\left(\dfrac{1}{c+d}+\dfrac{1}{a+b}\right)\)

Áp dụng BĐT cauchy dạng phân thức:

\(\dfrac{1}{b+c}+\dfrac{1}{a+d}\ge\dfrac{4}{a+b+c+d};\dfrac{1}{c+d}+\dfrac{1}{a+b}\ge\dfrac{4}{a+b+c+d}\)

do đó \(VT\ge\dfrac{4\left(a+c\right)}{a+b+c+d}+\dfrac{4\left(b+d\right)}{a+b+c+d}=4\)

dấu = xảy ra khi a=b=c=d

2 tháng 7 2018

Áp dụng bđt AM-GM:

\(\sum\dfrac{a^3}{a^2+b^2}=\sum\left(a-\dfrac{ab^2}{a^2+b^2}\right)\ge\sum\left(a-\dfrac{b}{2}\right)=a+b+c-\dfrac{a}{2}-\dfrac{b}{2}-\dfrac{c}{2}=\dfrac{a+b+c}{2}\)

\("="\Leftrightarrow a=b=c\)

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

21 tháng 6 2017

làm rõ \(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)

\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)

\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\) (đúng)

21 tháng 6 2017

ok thỏa thuận rồi tui làm nửa sau thui nhé :D

Đặt \(a^2=x;b^2=y;c^2=z\) thì ta có:

\(VT=\sqrt{\dfrac{x}{x+y}}+\sqrt{\dfrac{y}{y+z}}+\sqrt{\dfrac{z}{x+z}}\)

Lại có: \(\sqrt{\dfrac{x}{x+y}}=\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)

Tương tự cộng theo vế rồi áp dụng BĐT C-S ta có:

\(VT^2\le2\left(x+y+z\right)\left[\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(y+z\right)\left(y+x\right)}+\dfrac{z}{\left(z+x\right)\left(z+y\right)}\right]\)

\(\Leftrightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

\(VP^2=\dfrac{9}{2}\) nên cần cm \(VT\le \frac{9}{2}\)

\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+yz+xz\right)\)

Can you continue

14 tháng 7 2017

a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)

\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)

\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)

14 tháng 7 2017

b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)

\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 1:

\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)

\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)

Áp dụng BĐT Cô-si:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

Áp dụng BĐT SVac-xơ kết hợp với Cô-si:

\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Cộng các BĐT trên :

\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 2:

Áp dụng BĐT Svac-xơ:

\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)

\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)

Cộng theo vế và rút gọn :

\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

14 tháng 6 2017

Search mạng trước khi đăng nhs bn!

Cho a,b,c,d >0 .CMR: a/(b+c) + b/(c+d) + c/(d+a) + d/( a+b)? | Yahoo Hỏi & Đáp

24 tháng 9 2018

đề sai rồi

25 tháng 9 2018

Sửa đề: \(1< \dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{a+c+d}+\dfrac{d}{b+c+d}< 2\)

Ta có : \(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\) (1)

\(\dfrac{b}{a+b+d}>\dfrac{b}{a+b+c+d}\) (2)

\(\dfrac{c}{a+c+d}>\dfrac{c}{a+b+c+d}\) (3)

\(\dfrac{d}{c+b+d}>\dfrac{d}{a+b+c+d}\) (4)

Từ (1)(2)(3)(4) =>\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{a+c+d}+\dfrac{d}{b+c+d}>\dfrac{a+b+c+d}{a+b+c+d}=1\)

Lại có:\(\dfrac{a}{a+b+c}< \dfrac{a+d}{a+b+c+d}\)(Vì a<a+b+c)

\(\dfrac{b}{a+b+d}< \dfrac{b+c}{a+b+c+d}\)(Vì b<a+b+d)

\(\dfrac{c}{a+c+d}< \dfrac{b+c}{a+b+c+d}\)(Vì c<c+a+d)

\(\dfrac{d}{b+c+d}< \dfrac{d+a}{a+b+c+d}\)(Vì d<d+b+c)

=>\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{a+c+d}+\dfrac{d}{b+c+d}< \dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\\ \text{Vậy 1< ...< 2}\)