Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác đều ABC có
G là trọng tâm của tam giác(gt)
=> 3 đường trung tuyến bằng nhau
=> \(GB=GC=AG=\dfrac{2}{3}AM=\dfrac{2}{3}.3=2\left(cm\right)\)
cho tam giác abc nhọn có góc ACB=50 độ, h là trực tâm tam giác ABC. khẳng định nào dưới đây sai:
A. góc AHB=130 độ B.góc HBC=40 độ C. góc HAC=BHC D. góc A> góc B>góc C ( bạn nhớ giải thích dùm mk nha)Đề có sai không bạn , nếu `Delta ABC` là tam giác thường thôi thì không cm đc đâu ạ
a)
Vì G là trọng tâm tam giác ABC và AM là đường trung tuyến nên AG= \(\dfrac{2}{3}\)AM (tính chất ba đường trung tuyến của tam giác)
Do đó AG= \(\dfrac{2}{3}.AM=\dfrac{2}{3}.9=6\left(cm\right)\)
b) Vì G là trọng tâm tam giác ABC và AM là đường trung tuyến nên AG= \(\dfrac{2}{3}\)AM (tính chất ba đường trung tuyến của tam giác)
Do đó AM= \(\dfrac{AG}{\dfrac{2}{3}}=\dfrac{8}{\dfrac{2}{3}}=12\left(cm\right)\)
a) Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
G A B C D E F
tam giác ABC đều
=> AB=AC=BC
góc B = góc C= góc A
D,E,F là trung điểm BC,AC,AB
Xét tam giác ABD và ADC
AD chung
AB=AC
BD=DC
=> ABD=ACD (c.c.c)
=> góc ADB = góc ADC = 90 độ , góc BAD = góc CAD = 30 độ
tương tự ta có:
góc AFC =BFC, ACF=BCF=30
góc AEB=CEB, EBC = EBA=30
Xét tam giác AFG và tam giác BFG
góc AFG=BFG
AF=FB
góc FAG= FBG=30 độ
FG chung
=>tam giác AFG=BFG
=>AG=GB
tương tự cm tam giác AEG=CEG
=>AG=GC mà AG=GB
=>GA=GB=GC
Vậy ...
Theo tính chất đường trung tuyến trong tam giác vuông thì ta có:
\(AG=2.GM=\frac{2}{3}AM=\frac{2}{3}.12=8\)(cm)
\(\Rightarrow GM=8:2=4\)(cm)
Theo tính chất của trọng tâm thì ta có :
\(AG=\frac{2}{3}AM\)
Mà AM = 6cm
\(\Rightarrow AG=\frac{2}{3}.6=4\left(cm\right)\)
Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm a, Tính HM,PA,GB. b, Chứng minh tam giác HPG cân
Vì ΔABC đều có G là trọng tâm
nên GB=GA=GC
=>\(GB=GC=\dfrac{2}{3}AM=\dfrac{2}{3}\cdot3=2\left(cm\right)\)