K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a:b:c=b:c:a\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\left(a+b+c\ne0\right)\)

=>a=b=c

=>(2a+9b+1945c)2009=(2a+9a+1945a)2009=(1956a)2009=19562009.a2009

19562009.a30.b4.c1975=19562009.a30.a4.a1975

=19562009.a2009

=> (2a + 9b + 1945c)2009 = 19562009.a30.b4.c1975

=>đpcm

1 tháng 10 2015

a : b : c = b : c : a => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\). Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) => a = b = c

Ta có:VT =  (2a + 9b+ 1945c)2009 = (2a+ 9a+ 1945a)2009 = 19520096a2009

VP = 19562009.a30.b4.c1975 = 19562009.a30.a4.a1975 = 19562009a2009

=> đpcm

10 tháng 10 2015

đề bài sai, không thể 1995+30+4=2009 đc

phải sửa 1995=1975

10 tháng 10 2015

a : b : c = b : c : a => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) => a = b = c

+) (2a + 9b + 1945c)2009 = (2a + 9a + 1945a)2009 = 19562009a2009

+) 19562009.a30.b4.c1995 = 19562009.a30.a4.a1995 = 19562009.a2009

=> (2a + 9b + 1945c)2009 = 19562009.a30.b4.c1995 

=> đpcm

26 tháng 7 2015

mk cung nhu ban ay thoi

18 tháng 7 2017

\(a:b:c=b:c:a\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)\(\Rightarrow a=b=c\)

Ta có : 

+) \(\left(2a+9b+1945c\right)^{2009}=\left(1956a\right)^{2009}\) (1)

+) \(1956^{2009}.a^{30}.b^4.c^{1975}=1956^{2009}.a^{2009}=\left(1956a\right)^{2009}\) (2)

Từ (1) ; (2) => đpcm

12 tháng 11 2017

Theo đề bài ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)

Hay \(a=b=c\)

Thay vào bài toán:

\(\left(2a+70b+1945c\right)^{2018}=\left(2a+70a+1945a\right)^{2018}=2017a^{2018}\)

Lại có:

\(2017^{2018}.a^{39}.b^{13}.b^{1975}=2017^{2018}.a^{39}.a^{13}.a^{1975}=2017^{2018}.a^{2018}=2017a^{2018}\)Ta có đpcm

13 tháng 11 2017

Đúng rồi đấy.T định lm mà -.-

8 tháng 9 2016

a . 

\(b^2\)= ac => \(\frac{a}{b}\)=\(\frac{b}{c}\)

c\(^2\)= bd => \(\frac{b}{c}=\frac{c}{d}\)

=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}\)=\(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)( theo \(\frac{t}{c}\)của dãy tỉ số = )

Mà \(\frac{a^3}{b^3}\)\(\frac{a}{b}\)x   \(\frac{a}{b}\).x   \(\frac{a}{b}\)  =   \(\frac{a}{b}\)    x\(\frac{b}{c}\)x\(\frac{c}{d}\)\(\frac{a}{d}\)

Nên \(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)=\(\frac{a}{d}\)

8 tháng 9 2016

 x-y=2<=>x=y+2 
thay vào Q được: 
Q=(y+2)^2+y^2-(y+2)y 
=y^2+2y+4 
=(y+1)^2+3 
=>A>=3 
dấu bằng xảy ra <=>y= -1 và x=1 
vậy min Q=3

15 tháng 10 2016

b2 = ac => \(\frac{a}{b}=\frac{b}{c}\)

c2 = bd => \(\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}\)

Theo tính chất dãy tỉ số bằng nhau

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

=> Đpcm