\(\dfrac{1}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018
https://i.imgur.com/vrdciyt.jpg
3 tháng 4 2018

a+b+c=1

⇔ (a+b+c )2=1

⇔a2+b2+c2+2ab+2ac+2bc =1

⇔ 2ab+2bc+2ac =1-a2+b2+c2

⇔2(ab+bc+ac)< 1

\(ab+bc+ac< \dfrac{1}{2}\left(đpcm\right)\)

11 tháng 5 2017

\(\dfrac{ab}{6+a-c}+\dfrac{bc}{6+b-a}+\dfrac{ca}{6+c-b}=\dfrac{ab}{2a+b}+\dfrac{bc}{2b+c}+\dfrac{ca}{2c+a}\)

Mà ta có:

\(\dfrac{2a+b}{ab}=\dfrac{2}{b}+\dfrac{1}{a}=\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{a}\ge\dfrac{9}{2b+a}\)

\(\Rightarrow\dfrac{ab}{2a+b}\le\dfrac{2b+a}{9}\)

Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{bc}{2b+c}\le\dfrac{2c+b}{9}\\\dfrac{ca}{2c+a}\le\dfrac{2a+c}{9}\end{matrix}\right.\)

Cộng 3 cái trên vế theo vế ta được

\(\dfrac{ab}{2a+b}+\dfrac{bc}{2b+c}+\dfrac{ca}{2c+a}\le\dfrac{3\left(a+b+c\right)}{9}=\dfrac{3.6}{9}=2\)

11 tháng 5 2017

bạn cho mik hỏi là tại sao bạn có thể nghĩ ra như vậy k

10 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2+1^2+1^2\right)\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)

\(\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2=1\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\)

Lại có:

\(a^2+b^2+c^2+d^2\ge ab+bc+cd+da\forall a,b,c,d\)

\(\Rightarrow\dfrac{1}{2}>\dfrac{1}{4}\ge ab+bc+ca+da\) (ĐPCM)

28 tháng 8 2018

Ta có:

\(a+b+c=1\)

\(\Rightarrow\left(a+b+c\right)^2=1\)

\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=1\)

\(\Rightarrow2ab+2ac+2bc=1-a^2-b^2-c^2\)

\(\Rightarrow2\left(ab+ac+bc\right)=1-a^2-b^2-c^2\)

\(1-a^2-b^2-c^2< 1\)

\(\Rightarrow2\left(ab+ac+bc\right)< 1\)

\(\Rightarrow ab+ac+bc< \dfrac{1}{2}\)

24 tháng 3 2018

a + b + c =1 ⇔ (a + b + c)2 = 1

⇔ a2 + b2 + c2 + 2ab +2ac +2bc = 1

⇔2(ab + bc +ca) = 1 - a2 + b2 + c2

⇒2(ab + bc + ca) < 1

⇔ ab + bc +ca < \(\dfrac{1}{2}\)

26 tháng 12 2017

a/d vào công thức a^3+b^3+b^3=3abc( khi a+b+c=0)

ta đc 1/a+1/b+1/c=0

=> (1/a)^3+(1/b)^3+(1/c)^3=3. (1/abc)

lại có S=\(\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=\dfrac{abc}{a^3}+\dfrac{abc}{b^3}+\dfrac{abc}{c^3}\)

=abc (\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\))

=3.\(\dfrac{abc}{abc}\)=1

chúc bạn học tốt ^ ^

26 tháng 12 2017

Dễ CM : nếu x+y+z=0 thì x^3+y^3+z^3=3xyz

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

\(S=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=\dfrac{abc}{a^3}+\dfrac{abc}{b^3}+\dfrac{abc}{c^3}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)\\ =abc.\dfrac{1}{abc}=1\)

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Lời giải:

Áp dụng BĐT Cô-si cho các số dương ta có:

\(\frac{a}{bc}+\frac{b}{ac}\geq 2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=2\sqrt{\frac{1}{c^2}}=\frac{2}{c}\)

\(\frac{b}{ac}+\frac{c}{ab}\geq 2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\)

\(\frac{a}{bc}+\frac{c}{ab}\ge 2\sqrt{\frac{a}{bc}.\frac{c}{ab}}=2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)

Cộng các BĐT trên theo vế và rút gọn

\(\Rightarrow \frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

20 tháng 12 2018

Bài 2:

a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)

\(a+b+c=0\)

Nên a + b = -c (1)

Thay (1) vào A, ta được:

\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)

\(A=\dfrac{1}{abc}.3abc\)

\(A=3\)

b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)

\(a+b+c=0\)

Nên b + c = -a

=> ( b + c )2 = (-a)2

=> b2 + c2 + 2bc = a2

=> b2 + c2 = a2 - 2bc (1)

Tương tự ta có: c2 + a2 = b2 - 2ac (2)

a2 + b2 = c - 2ab (3)

Thay (1), (2) và (3) vào B, ta được:

\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)

\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)

\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)

\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)

\(a^3+b^3+c^3=3abc\) ( câu a )

\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)

\(\Rightarrow B=\dfrac{3}{2}\)

20 tháng 12 2018

Bài 1:

a) GT: abc = 2

\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)

\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(M=\dfrac{1+b+bc}{bc+b+1}\)

\(M=1\)

b) GT: abc = 1

\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)

\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)

\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(N=\dfrac{1+b+bc}{bc+b+1}\)

\(N=1\)