Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn chép lại đề nha
=a3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a
=a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a
= -a^2b-abc-b^2a
= -ab(a+b+c)=-ab 0 =0
vậy đa thức này bằng 0
C1
Giả sử căn 7 là số hữu tỉ Vậy căn 7 bằng a/b. Suy ra 7 bằng a bình / b bình. Suy ra a bình bằng 7b bình Suy ra a chia hết cho 7 Gọi a bằng 7k suy ra a bình bằng 7b bình Suy ra (2k) bình bằng 2b bình suy ra 4k bình bằng 2b bình suy ra 2k bình bằng b bình Suy ra ƯCLN(a,b)=2 Trái với đề bài =>căn 7 là số vô tỉ
ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)
và \(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm
\(\Rightarrow\) sai
Câu 4:
a) C/m tương đương
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) => luôn đúng
=> \(\dfrac{a+b}{2}\ge\sqrt{ab}\Rightarrowđpcm\)
b) \(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\)
Áp dụng BĐT: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
+) \(\dfrac{bc}{a}+\dfrac{ba}{c}=b\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge2b\)
+) \(\dfrac{ca}{b}+\dfrac{cb}{a}=c\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2c\)
+) \(\dfrac{ab}{c}+\dfrac{ac}{b}=a\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge2a\)
Cộng vế vs vế ta có:
\(2\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\Rightarrowđpcm\)
c) Áp dụng BĐT Cô-si cho 2 số không âm ta có:
\(12^2=\left(3a+5b\right)^2\ge4.3a.5b=60ab\)
=> \(ab\le\dfrac{12}{5}\)
Vậy GTLN của P là \(\dfrac{12}{5}\)
Dấu ''=" xảy ra khi \(3a=5b\), từ đó ta có hệ
\(\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)
Câu 2a
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=\left(a^2+b^2\right)c^2+d^2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2c^2+b^2d^2+a^2d^2+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Leftrightarrow a^2c^2+b^2d^2+a^2d^2+b^2c^2-\left(a^2c^2+b^2d^2+a^2d^2+b^2c^2\right)=0\)
\(\Leftrightarrow0=0\)( đpcm )
Câu 2b
\(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le\left(a^2+b^2\right)c^2+d^2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Leftrightarrow2abcd\le b^2c^2+a^2d^2\)
\(\Leftrightarrow0\le b^2c^2-2abcd+a^2d^2\)
\(\Leftrightarrow0\le\left(bc-ad\right)^2\)( đpcm )
Câu 4a
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\left(\frac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đpcm )
Câu 4c
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\)
\(\Rightarrow12\ge2\sqrt{15ab}\)
\(\Rightarrow6\ge\sqrt{15ab}\)
\(\Rightarrow6^2\ge15ab\)
\(\Rightarrow36\ge15ab\)
\(\Rightarrow ab\le\frac{12}{5}\)
\(\Leftrightarrow P\le\frac{12}{5}\)
Vậy GTLN của \(P=\frac{12}{5}\)
\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
\(a^3+b^3+a^2c+b^2c\)
\(=a^2\left(a+c\right)+b^2\left(b+c\right)\)
\(=-ba^2-ab^2\)
\(=-ab\left(a+b\right)\)
\(=-ab\cdot\left(-c\right)\)
\(=abc\) (đpcm)