Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\c+a=-b\\a+b=-c\end{matrix}\right.\)
\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{-abc}{abc}=-1\)
Với \(a+b+c\ne0\)
\(\dfrac{a+b-2021c}{c}=\dfrac{b+c-2021a}{a}=\dfrac{c+a-2021b}{b}=\dfrac{-2019\left(a+b+c\right)}{a+b+c}=-2019\\ \Leftrightarrow\left\{{}\begin{matrix}a+b-2021c=-2019c\\b+c-2021a=-2019a\\c+a-2021b=-2019b\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)
\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{2a\cdot2b\cdot2c}{abc}=8\)
Với a+b+c=0⇔⎧⎪⎨⎪⎩b+c=−ac+a=−ba+b=−ca+b+c=0⇔{b+c=−ac+a=−ba+b=−c
B=a+ba⋅a+cc⋅b+cb=−abcabc=−1B=a+ba⋅a+cc⋅b+cb=−abcabc=−1
Với a+b+c≠0a+b+c≠0
a+b−2021cc=b+c−2021aa=c+a−2021bb=−2019(a+b+c)a+b+c=−2019⇔⎧⎪⎨⎪⎩a+b−2021c=−2019cb+c−2021a=−2019ac+a−2021b=−2019b⇔⎧⎪⎨⎪⎩a+b=2cb+c=2ac+a=2b
b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Ta có:
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\) và \(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)và \(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)và \(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)và \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)
và \(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)
\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)
+) Vì a,b,c đôi một khác 0
\(\Rightarrow a+b+c=0\)
\(\rightarrow a+b=\left(-c\right)\)
\(\rightarrow a+c=\left(-b\right)\)
\(\rightarrow b+c=\left(-a\right)\)
+) Ta có:
\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)
\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)
\(=\left(-1\right)\)
Áp dụng t/c dtsbn:
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\\ \Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow P=\dfrac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a\cdot a\cdot a}=\dfrac{8a^3}{a^3}=8\)
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)
\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2a.2b.2c}{abc}=8\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)
\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)
\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)
Theo T/C dãy tỉ số bằng nhau
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\frac{a+b}{c}=2\Rightarrow a+b=2c\)
Tương tự ta có
\(b+c=2a\)
\(c+a=2b\)
Xét \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)\)
\(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)
Ta có : \(a-b-c=0\)
\(\Rightarrow\left\{{}\begin{matrix}a=b+c\\b=a-c\\c=a-b\end{matrix}\right.\)
Thay a = b + c ; b = a - c ; c = a - b vào biểu thức A , ta được :
\(A=\left(1-\dfrac{a-b}{a}\right)\left(1-\dfrac{b+c}{b}\right)\left(1+\dfrac{a-c}{c}\right)\)
\(=\left(1-\dfrac{a}{a}+\dfrac{b}{a}\right)\left(1-\dfrac{b}{b}-\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}-\dfrac{c}{c}\right)\\ =\dfrac{b}{a}\cdot\dfrac{-c}{b}\cdot\dfrac{a}{c}=-1\)
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
\(=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}\)
\(=\dfrac{\left(a+b+b+c+c+a\right)-\left(c+a+b\right)}{a+b+c}\)
\(=\dfrac{2a+2b+2c-a-b-c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a+b-c}{c}=1\\\dfrac{b+c-a}{a}=1\\\dfrac{c+a-b}{b}=1\end{matrix}\right.\)
\(PHUCDZ=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
\(PHUCDZ=\left(\dfrac{b+c-a}{a}+\dfrac{b}{a}\right)\left(\dfrac{c+a-b}{b}+\dfrac{c}{b}\right)\left(\dfrac{a+b-c}{c}+\dfrac{a}{c}\right)\)
\(PHUCDZ=\dfrac{b+c-a+b}{a}.\dfrac{c+a-b+c}{b}.\dfrac{a+b-c+a}{c}\)
\(PHUCDZ=\dfrac{2b+c-a}{a}.\dfrac{2c+a-b}{b}.\dfrac{2a+b-c}{c}\)
\(PHUCDZ=\dfrac{\left(2b+c-a\right)\left(2c+a-b\right)\left(2a+b-c\right)}{abc}\)
Lời giải:
Ta có:
\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-a)(b-c)}+\frac{a-b}{(c-a)(c-b)}=2013\)
\(\Leftrightarrow \frac{-(b-c)^2}{(a-b)(b-c)(c-a)}+\frac{-(c-a)^2}{(a-b)(b-c)(c-a)}+\frac{-(a-b)^2}{(a-b)(b-c)(c-a)}=2013\)
\(\Leftrightarrow \frac{-[(a-b)^2+(b-c)^2+(c-a)^2]}{(a-b)(b-c)(c-a)}=2013\)
\(\Rightarrow \frac{2(a^2+b^2+c^2-ab-bc-ac)}{(a-b)(b-c)(c-a)}=-2013(*)\)
Lại có:
\(P=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=\frac{(b-c)(c-a)+(c-a)(a-b)+(a-b)(b-c)}{(a-b)(b-c)(c-a)}\)
\(=\frac{bc-ba-c^2+ca+ca-bc-a^2+ab+ab-ac-b^2+bc}{(a-b)(b-c)(c-a)}\)
\(=\frac{ab+bc+ac-(a^2+b^2+c^2)}{(a-b)(b-c)(c-a)}=-\frac{1}{2}.\frac{2(a^2+b^2+c^2-ab-bc-ac)}{(a-b)(b-c)(c-a)}\)
\(=\frac{-1}{2}.-2013=\frac{2013}{2}\) (theo $(*)$)
Đề thiếu điều kiện \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\) nữa đấy
Ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
\(=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}\)
\(=\dfrac{a+b+c}{a+b+c}\)
\(=1\)
Với \(\dfrac{a+b-c}{c}=1\)
\(\Rightarrow a+b-c=c\)
\(\Rightarrow a+b=2c\left(1\right)\)
Với \(\dfrac{b+c-a}{a}=1\)
\(\Rightarrow b+c-a=a\)
\(\Rightarrow b+c=2a\left(2\right)\)
Với \(\dfrac{c+a-b}{b}=1\)
\(\Rightarrow c+a-b=b\)
\(\Rightarrow c+a=2b\left(3\right)\)
Ta lại có:
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{b}{b}+\dfrac{a}{b}\right)\left(\dfrac{c}{c}+\dfrac{b}{c}\right)\left(\dfrac{a}{a}+\dfrac{c}{a}\right)\)
\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)
Thay (1) , (2) và (3) vào ta được
\(=\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\)
\(=\dfrac{8abc}{abc}\)
\(=8\)