K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

\(A=(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)\)

\(\Rightarrow 2018A=(a-b)(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)\)

\(=(a^2-b^2)(a^2+b^2)(a^4+b^4)(a^8+b^8)\)

\(=(a^4-b^4)(a^4+b^4)(a^8+b^8)\)

\(=(a^8-b^8)(a^8+b^8)\)

\(=a^{16}-b^{16}\)

\(\Rightarrow A=\frac{a^{16}-b^{16}}{2018}\)

11 tháng 7 2018

ai tích mình mình tích lại cho

10 tháng 10 2019

câu a là hằng đẳng thức luôn

A=(2x+4)^2

B khai triển tung tóe ra thì phần sau triệt tiêu hết còn 4(a^2+b^2+c^2)

câu c cảm giác sai đề vì mấy câu này phải là (3x)^ ms ra hdt chứ nhỉ

19 tháng 12 2016

a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)

\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a-b}{b+c}\)

19 tháng 12 2016

Sửa lại: \(\frac{a-c}{b+c}\)

5 tháng 2 2017

Ta có: 

a2(b - c) + b2(c - a) + c2(a - b)

= (a - b)(c - a)(c - b)

Ta lại có:

a4(b2 - c2) + b4(c2 - a2) + c4(a2 - b2)

= (a - b)(c - a)(c - b)(a +b)(b + c)(c + a)

Từ đây ta có phân số ban đầu sẽ bằng 

\(\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(c-a\right)\left(c-b\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

5 tháng 2 2017

kc cho mh nhé.

=a 3 + 

b+ 5c

26 tháng 11 2016

 đâu khó đâu cái này lớp 6 chứ 8 cái gì

26 tháng 11 2016

Nếu không khó thì giải giùm đi

6 tháng 8 2016

\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{15}+1\right)\)

\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(\frac{1}{2}\left(5^{32}+1\right)=\frac{5^{32}+1}{2}\)

 

6 tháng 8 2016

a)

 Ta có

a chia 5 dư 4

=> a=5k+4 ( k là số tự nhiên )

\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)

Vì 25k^2 chia hết cho 5

    40k chia hết cho 5

    16 chia 5 dư 1

=> đpcm

2) Ta có

\(12=\frac{5^2-1}{2}\)

Thay vào biểu thức ta có

\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)}{2}\)

\(\Rightarrow P=\frac{\left[\left(5^2\right)^2-1^2\right]\left[\left(5^2\right)^2+1^2\right]\left(5^8+1\right)}{2}\)

\(\Rightarrow P=\frac{\left[\left(5^4\right)^2-1^2\right]\left[\left(5^4\right)^2+1^2\right]}{2}\)

\(\Rightarrow P=\frac{5^{16}-1}{2}\)

3)

\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(=a^3+b^3+c^2+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

 

19 tháng 12 2019

\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{^{^{ }}a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)

=\(\frac{a^2b-a^2c+b^2c-b^2a+c^2a-c^2b}{a^4b^2-a^4c^2+b^4c^2-b^4a^2+c^4a^2-c^4b^2}\)

*Rút gọn âm và dương đối nhau ( VD: \(a^2\)\(-a^2\)), còn lại bạn tự tìm thêm nhé :)

\(\frac{b-c+c-a+a-b}{b^2-c^2+c^2-a^2+a^2-b^2}\)

Ta lại rút gọn các cặp đối nhau ( như trên VD)

Kết quả cuối cùng là 0

19 tháng 12 2019

Đặt biểu thức đã cho là A

Xét tử: \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)\)

\(=\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-\left(a-b\right)\left(ca+bc\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ca-bc+c^2\right)\)\(=\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

Xét mẫu : làm tương tự như trên ta được 

\(a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)=\left(a^2-b^2\right)\left(a^2-c^2\right)\left(b^2-c^2\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)\left(a+c\right)\left(b-c\right)\left(b+c\right)\)

\(\Rightarrow A=\frac{1}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)