Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1) => 2x2+2y2+2z2-2xy-2yz-2xz=0
<=> (x2-2xy+y2) + (x2-2xz+z2) + (y2-2yz+z2)=0
<=> (z-y)2 + (x-z)2 + (y-z)2 = 0
<=> x=y=z
(2) => x2002 + x2002 + x2002 = 32003
<=> 3x2002 = 32003
x=y=z=3
\(S=2006^2-2005^2+2004^2-2003^2+....+2^2-1^2\)
\(=\left(2006-2005\right)\left(2006+2005\right)+\left(2004-2003\right)\left(2004+2003\right)+...\left(2-1\right)\left(2+1\right)\)
\(=2006+2005+2004+....+2+1\)
\(=\frac{2006\left(2006+1\right)}{2}=2013021\)
\(-S=\left(2006^2-2005^2\right)+...+\left(2^2-1^2\right)\) làm số dương cho đỡ rối
\(-S=2006+2005+...+2+1=\frac{2006.2007}{2}=1003.2007\)
S=-1003.2007
Bạn tham khảo :
Ta có :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+3=1\)
\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2=0\)
\(\Rightarrow abc\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2\right)=abc.0\)
\(\Rightarrow a^2b+b^2c+a^2c+b^2a+c^2a+c^2b+2abc=0\)
\(\Rightarrow\left(a^2b+ab^2\right)+\left(b^2c+abc\right)+\left(a^2c+abc\right)+\left(c^2a+c^2b\right)=0\)
\(\Rightarrow ab\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Rightarrow\left(ab+bc+ac+c^2\right)\left(a+b\right)=0\)
\(\Rightarrow\left[\left(ab+bc\right)+\left(ac+c^2\right)\right]\left(a+b\right)=0\)
\(\Rightarrow\left[b\left(a+c\right)+c\left(a+c\right)\right]\left(a+b\right)=0\)
\(\Rightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)
TH1 : \(a+c=0\)
\(\Rightarrow a=-c\)
\(\Rightarrow c^{2006}=a^{2006}\)
\(\Rightarrow P=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)\left(c^{2006}-a^{2006}\right)\)
\(=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)0\)
\(=0\)
CMTT đều có \(P=0\)
Vậy ...
\(1=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1+\left(b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{a}{bc}\right)\)
\(\Leftrightarrow\left(b+c\right)\left(\dfrac{bc+ac+ab+a^2}{abc}\right)=0\)
\(\dfrac{\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc}=0\Rightarrow\left[{}\begin{matrix}a=-c\\a=-b\\b=-c\end{matrix}\right.\)
Xét 3 TH
=> P=0 ( đề bài BT ở giữa có 1 số mũ sai nha )
\(M=4x^2-2\left(a+b+c\right)x-\left(ab+bc+ca\right)\)
Thay x, ta có:
\(M=4.\left(\frac{a+b+c}{2}\right)^2-2\left(a+b+c\right).\frac{a+b+c}{2}-\left(ab+bc+ca\right)\)
\(=\left(a+b+c\right)^2-\left(a+b+c\right)^2-\left(ab+bc+ca\right)\)
\(=-ab-bc-ca\)
2/ Số mũ tùm lum, có lẽ b nên ktra lại đề bài!
Từ giả thiết suy ra: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{c}-\dfrac{1}{a+b+c}\right)=0\)
\(\Rightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\) (a + b)[c(a + b + c) + ab] = 0
\(\Rightarrow\) (a + b)(ac + ab + bc + c2) = 0
\(\Rightarrow\) (a + b)(b + c)(a + c) = 0
P = (a2004 - b2004)(b2005 + c2005)(c2006 - a2006)
= (a + b)(b + c)(a + c) = 0